ConvertFrom-Json is not serializable

Introduction

While writing Bicep recently, I was stumped by the fact that my deployment kept failing. I spent a lot of time troubleshooting many possible ideas on what might be causing this. As JSON is involved and I am far from a JSON syntax guru, I first focused on that. Later I moved to how I use JSON in Bicep and PowerShell before finally understanding the problem was due to the fact that ConvertFrom-Json is not serializable.

Parameters with Bicep

When deploying resources in Azure with Bicep, I always need to consider who has to deliver or maintain the code and the parameters. It has to be somewhat structured, readable, and understandable. It can’t be one gigantic listing that confuses people to the point they are lost. Simplicity and ease of use rule my actions here. I know when it comes to IaC, this can be a challenge. So, when it comes to parameters, what are our options here?

  • I avoid hard-coding parameters in Bicep. It’s OK for testing while writing the code, but beyond that, it is a bad idea for maintainability.
  • You can use parameter files. That is a considerable improvement, but it has its limitations.
  • I have chosen the path of leveraging PowerShell to create and maintain parameters and pass those via objects to the main bicep file for deployment. That is a flexible and maintainable approach. Sure, it is not perfect either, but neither am I.

Regarding Bicep and PowerShell, we can also put parameters in separate files and read those to create parameters. Whether this is a good idea depends on the situation. My rule of thumb is that it is worth doing when things become easier to read and maintain while reducing the places where you have to edit your IaC files. In the case of Azure Firewall Policy Rules Collection Groups, Rules collections, and Rules, it can make sense.

Bicep and JSON files

You can read file content in Bicep using. With the json() function, you can tell Bicep that this is JSON. So far, so good. The below is perfectly fine and works. We can loop through that variable in a resource deployment.

var firewallChildRGCs = [

    json(loadTextContent('./AFW/Policies/RGSsAfwChild01.json'))

    json(loadTextContent('./AFW/Policies/RGSsAfwChild02.json'))

    json(loadTextContent('./AFW/Policies/RGSsAfwChild03.json'))

]

However, I am not entirely happy with this. While I like it in some aspects, it conflicts with my desire not needing to edit a working Bicep file once it is in use. So what do I like about it?

It keeps Bicep clean and concise and limits the looping to iterate over the Rules Collection Groups, thus avoiding the nested looping for Rules collections and Rules. Why is that? Because I can do this

@batchSize(1)

resource firewallChildPolicyWEUColGroups 'Microsoft.Network/firewallPolicies/ruleCollectionGroups@2022-07-01' = [for (childrcg, index) in firewallChildRGCs: {

  parent: firewallChildPolicyWEU

  name: childrcg.name

  dependsOn: [firewallParentPolicyWEUColGroups]

  properties: childrcg.properties

}]

As you can see, I loop through the variable and pass the JSON into the properties. That way, I create all Rule Collections and Rules without needing to do any nested looping via “helper” modules to get this done.

The drawback, however, is that the loadTextContent function in Bicep cannot use dynamic parameters or variables. As a result, the paths to the files need to be hard coded into the Bicep file. That is something we want to avoid. But until that is possible, it is a hard restriction. That is because parameters are evaluated during runtime (bicep deployment), whereas loadTextContent in Bicep happens while compiling (bicep build). So, in contrast to the early previews of Bicep, where you “transpiled” the Bicep manually, it is now done for you automatically before the deployment. You think this can work, but it does not.

PowerShell and JSON files

As mentioned above, I chose to use PowerShell to create and maintain parameters, and I want to read my JSON files there. However, it prevents me from creating large, long, and complex to maintain PowerShell objects with nested arrays. Editing these is not straightforward for everyone. On top of that, it leads to the need for nested looping in Bicep via “helper” modules. While that works, and I use it, I find it more tedious with deeply nested structures and many parameters to supply. Hence I am splitting it out into easier-to-maintain separate JSON files.

Here is what I do in PowerShell to build my array to pass via an Object parameter. First, I read the JSON filers from my folder.

$ChildFilePath = "../bicep/nested/AfwChildPoliciesAndRules/*"
$Files = Get-ChildItem -File $ChildFilePath -Include '*.json' -exclude 'DONOTUSE*.json'
$Files
$AfwChildCollectionGroupsValidate = @() # We use this with ConvertFrom-Json to validate that the JSON file is OK, but cannot use this to pass as a param to Bicep
    $AfwChildCollectionGroups = @()
    Foreach ($File in $Files) {
    try{
        $AfwChildCollectionGroupsValidate += (Get-Content $File.FullName -Raw) | ConvertFrom-Json
        # DO NOT PUT JSON in here - the PSCustomObject is not serializable and passing this param to Bicep will than be empty!
        $AfwChildCollectionGroups += (Get-Content $File.FullName -Raw) # A string is serializable!
        }
        Catch
        {
        write-host -ForegroundColor Red "ConvertFrom-Json threw and error. Check your JSON in the RCG/RC/R files"
        Exit
        }
    }

I can then use this to roll out the resources, as in the below example.

// Roll out the child Rule Collection Group(s)

var ChildRCGs = [for (rulecol, index) in firewallChildpolicy.RuleCollectionGroups: {

  name: json(rulecol).name

  properties: json(rulecol).properties

}]

Initially, the idea was that by using ConvertFrom-Json I would pass the JSON to Bicep as a parameter directly.

$AfwChildCollectionGroups += (Get-Content $File.FullName -Raw) | ConvertFrom-Json

So not only would I not need to load the files in Bicep with a hard-coded path, I would also not need to use json() function in Bicep.

// Roll out the child Rule Collection Group(s)
var ChildRCGs = [for (rulecol, index) in firewallChildpolicy.RuleCollectionGroups: {
  name: rulecol.name
  properties: rulecol.properties
}]

However, this failed on me time and time again with properties not being found and what not. Below is an example of such an error.

Line |
  30 |          New-AzResourceGroupDeployment @params -DeploymentDebugLogLeve …
     |          ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     | 2:46:20 PM - Error: Code=InvalidTemplate; Message=Deployment template validation failed: 'The template variable 'ChildRCGs' is not valid: The language expression property 'name' doesn't exist, available properties are ''.. Please see    
     | https://aka.ms/arm-functions for usage details.'.

It did not make sense at all. That was until a dev buddy asked if the object was serializable at all. And guess what? ConvertFrom-Json creates a PSCustomObject that is NOT serializable.

You can check this quickly yourself.

((Get-Content $File.FullName -Raw) | ConvertFrom-Json).gettype().IsSerializable

Will print False

While

((Get-Content $File.FullName -Raw)).gettype().IsSerializable

Will print True

With some more testing and the use of outputs, I can even visualize that the parameter remained empty! The array contains three empty {} where I expected the JSON.

ConvertFrom-Json is not serializable

I usually do not have any issues with this in my pure PowerShell scripting. But here, I pass the object from PowerShell to Bicep, and guess what? For that to work, it has to be serializable. Now, when I do this, there are no warnings or errors. It just seems to work until you use the parameter and get errors that, at first, I did not understand. But the root cause is that in Bicep, the parameter remained empty. Needless to say, I wasted many hours trying to fix this before I finally understood the root cause!

As you can see in the code, I still use ConvertFrom-Json to test if my JSON files contain any errors, but I do not pass that JSON to Bicep as that will not work. So instead, I pass the string and still use the json() function in Bicep.

Hence, this blog post is to help others not make the mistake I made. It will also help me remember ConvertFrom-Json is not serializable.

Use DNS Application Directory Partitions with conditional forwarders to resolve Azure private endpoints

Use DNS Application Directory Partitions with conditional forwarders

Before I explain how to use DNS Application Directory Partitions with conditional forwarders, we need to set the stage. We will shortly revisit how DNS name resolution is set up and configured for hybrid Azure environments. Then it will help to understand why DNS Application Directory Partitions are useful in such scenarios.

Active Directory Domain Services extended to Azure

In the context of this article, an Azure hybrid environment is where you have Active Directory Domain Services (ADDS) extended to Azure. I.e., you have a least one AD site on-premises and at least one AD Site in Azure, with connectivity between the two all set up via ExpressRoute or a Site-to-Site VPN, firewall configured, etc. In most cases, the DNS servers for the ADDS environment are AD integrated. Which is what we want for this scenario.

You must have DNS name resolution sorted out effectively and efficiently in such an environment. Queries from on-premises to Azure need to be resolved, and queries from Azure to on-premises.

Regarding resolving private endpoints in Azure and potentially other private DNS zones in Azure, we need to leverage conditional forwarders. That means we must create all the public DNS zones as conditional forwarders on the on-premises domain controllers. We point these at our custom DNS servers in Azure or our Azure Firewall DNS proxy that points to our custom DNS servers in Azure. The latter is the better option if that is available. Those custom DNS Servers will most likely be our AD/DNS server in Azure. These will forward the queries to azure VIP 168.63.129.16, which will let Azure DNS handle the actual name resolution.

Conditional forwarders on-premises

There are two attention points in this scenario. First, the conditional forwarders should only exist on the on-premises DC/DNS servers. That is normal. The DC/DNS servers in Azure can just forward the queries to the Azure VIP, which will have the AD recursive DNS service query the private DNS zones and provide an answer. That is why we forward the on-prem queries to them directly or via the firewall DNS proxy.

Secondly, less frequent, but more often than you think, ADDS on-premises does not translate into a single Azure tenant or deployment. You can have multiple AD Sites in Azure for the same on-prem ADSS environment. That happens via different business units, mergers, and acquisitions, politics, life, or whatever.

Example on-prem / Azure ADDS environment with Azure FW DNS proxy.

Both attention points mean that we must ensure that the on-prem conditional forwarders only live on the DC/DNS servers that forward to the correct custom DNS services in Azure. Some DC/DNS servers on-premises might send their queries to Azure AD site 1 and others to Azure AD site 2, which might live in separate tenants or Azure deployments.

How do we achieve this?

One option is to create the conditional forwarders without storing and replicating them to all DC/DNS servers in the forest or the domain. That works quite well, but it leaves the burden to configure them on every DC/DNS server where required. That’s OK; PowerShell is your friend. See PowerShell script to maintain Azure Public DNS zone conditional forwarders – Working Hard In ITWorking Hard In IT for a script to do that for you.

But another option might be handy if you have 10 on-premises Active Directory Sites and 5 Azure Active Directory Sites. That option is called DNS partitioning. You can create your own Active Directory partitions, To those, you add the desired DC/DNS servers. You can now create your conditional forwarders, store them in Active Directory and replicate them to their respective custom partition. That leaves the flexibility to keep the conditional forwarders out of the Azure DC/DNS servers and enables different conditional forwarders configurations per on-premises Active Directory Site.

DNS Application Directory Partitions

To create the DNS application directory partitions, you can use PowerShell or the ‘dnscnd’ command line tool. I will use Powershell here. If you want to use the command line, look at How to create and apply a custom application directory partition on an Active Directory-integrated DNS zone on how to do this.

Add-DnsServerDirectoryPartition -Name "OP-BLUE-ADDS-SITE"

The command above did two things. It created the application directory partition and registered the DNS server on which you ran the script. You can test that with Get-DnsServerDirectoryPartition -Name “OP-BLUE-ADDS-SITE” or Get-DnsServerDirectoryPartition -Name “OP-BLUE-ADDS-SITE” -ComputerName ‘DC01’ if you specify the computer name.

By the way, if you run just Get-DnsServerDirectoryPartition, you will see all partition info for the current node or the node you specify.

Register the second DC/DNS server in this partition with the following command.

Register-DnsServerDirectoryPartition -Name "OP-BLUE-ADDS-SITE" -ComputerName 'DC02'.

Register-DnsServerDirectoryPartition -Name "OP-BLUE-ADDS-SITE" -ComputerName 'DC02'.

This returns nothing by default or an error in case something is wrong. Check your handy work with the below command.

Get-DnsServerDirectoryPartition -Name "OP-BLUE-ADDS-SITE" -ComputerName 'DC02'

Note that the Get-DnsServerDirectoryPartition only shows the registered DNS server for the node you are running it on or the one you specify. You do not get a list of all registered servers.

Now go ahead and store some zones in Active Directory and replicate to the BLUE partition on one of the DC/DNS servers you will see the ZoneCount go up on both. Just wait for replication to do its job or force replication to happen.

Storing the conditional forwarder in your DNS application directory partition

It is easy to store conditional forwarders in your custom DNS application directory partition. You can do this by adding or editing a conditional forwarding zone. However, be aware of the bug I wrote about in Bug when changing the “store this conditional forwarder in active directory” setting.

When you create the conditional forwarder zones for the private endpoints, you can store them in Active Directory and replicate them to their respective partitions. Just select the correct partition in the drop-down list. You will only see the partition for which your DC/DNS server has been registered, not every existing partition.

DNS Application Directory Partitions with conditional forwarders
Select the correct DNS application directory partition in the drop-down list

When done, the properties for the conditional forwarder will show that the zone is stored in Active Directory and replicated to all domain controllers in a user-defined scope.

DNS Application Directory Partitions with conditional forwarders
Conditional forwarder replicated to all DCs in a user-defined scope

Create a partition for any collection of DC/DNS servers that you want to have their Azure private endpoint DNS zones sent to a specific Azure deployment. So depending on your situation, that might be one or more.

As I mentioned, the custom partition will not even be offered on any DC/DNS server that has not enlisted for that zone. This protects against people selecting the wrong custom partition for their environment.

Conclusion

That’s it. You now have one more option on your tool belt when configuring on-premises to Azure name resolution in hybrid scenarios. The fun thing is that I have never seen more people learn about using DNS Application Directory Partitions with conditional forwarders now they have to design and configure DNS for hybrid on-premises/Azure ADDS environments. Maybe you learned something new today. If so, I am happy you did.

PowerShell script to maintain Azure Public DNS zone conditional forwarders

Introduction

I recently wrote a PowerShell script to maintain Azure Public DNS zone conditional forwarders. If you look at the list is quite long. Adding these manually is tedious and error-prone. Sure you might only need a few, but hey, I think and prepare long term.

Some background on DNS and private endpoints

When using private endpoints in Azure correct DNS name resolution is essential. While Azure can do a lot of things for you under the hood it is important to wrap your head around name resolution in Azure, for all your public, private, and custom DNS requirements. In the end, you need a DNS solution that is maintainable and works for current and future use cases. Your peaceful IT existence will fall apart fast without the ability to correctly resolve the private endpoint IP addresses to their fully qualified domain name (FQDN).

That in itself is a big subject I will not dive into right now. I will say that host files (if applicable) are OK for testing but not a maintainable solution, except for the smallest environments. In Azure, you can link virtual networks to Private DNS zones to resolve DNS queries for private endpoints. As an alternative, you can use your own custom DNS Server(s) with a forwarder to Azure’s VIP 168.63.129.16 and, at least on-premises conditional forwarders.

The latter is a requirement to resolve DNS queries for Azure resources with private endpoints for on-premises. At least until Azure DNS Private Resolver becomes generally available. That will be the way forward in the future if you otherwise have no need for custom DNS servers.

Please note that name resolution for private endpoints uses the public DNS zones. This allows existing Microsoft Azure services with DNS configurations for a public endpoint to keep functioning when accessed from the internet. Azure will intercept queries that originate from Azure or connected on-premises locations and reply with the private IP address of private endpoints. This configuration must be overridden to connect using your private endpoint.

On-premises DNS Servers

While your custom DNS servers in Azure can forward queries they are not authoritative for to the Azure VIP 168.63.129.16, on-premises servers cannot reach that IP address. They need to send the DNS queries for private Azure resources to a custom DSN Server in Azure via conditional forwarding. The Azure custom DNS server will forward the query to 168.63.129.16.

Example on-prem / Azure ADDS environment with Azure FW DNS proxy

PowerShell script to maintain Azure Public DNS zone conditional forwarders

Below you will find the code for the script. I created a CSV file with all the Azure public DNS Conditional forwarder zones. Zones with placeholders for regions, partitions, or SQL instances will be generated. For that, you need to provide the correct parameters. if not these are ignored.

PowerShell script to maintain Azure Public DNS zone conditional forwarders
Adding all Azure public DNS conditional forwarders to an on-premises DNS server

Another attention point is the fact that you can opt to store the zones in Active Directory or not. If so you can specify in what builtin or custom partition.

There are examples in the script TestAzurePublicDNSZoneForwardersScript.ps1 on how to use it. You will need at least one playground DNS server or better, 2 AD integrated DC/DNS servers for testing.

You can find the script at WorkingHardInIT/AzurePublicDnsZoneForwarders (github.com)

Conclusion

That’s it. I can extend the PowerShell script to maintain Azure Public DNS zone conditional forwarders with extra options when adding or updating conditional forwarders. Right now, for its current role, it does what I need. I do not plan to add an option to update the “store this conditional forwarder in Active Directory” setting as this has a bug.

See Bug when changing the “store this conditional forwarder in active directory” setting for more info. The gist is that it makes changing the setting causes DNS queries for the conditional forwarder to fail. We avoid that issue by removing and adding the conditional forwarders again. In many (most?) use cases so far, the default setting of not storing the conditional forwarder in Active Directory is what I need, so the script has no option to change that default setting until I might need it.

Code

Failing compilation with Azure Automation State Configuration: Cannot connect to CIM server. The specified service does not exist as an installed service

Introduction

You can compile Desired State Configuration (DSC) configurations in Azure Automation State Configuration, which functions as a pull server. Next to doing this via the Azure portal, you can also use PowerShell. The latter allows for easy integration in DevOps pipelines and provides the flexibility to deal with complex parameter constructs. So, this is my preferred option. Of course, you can also push DSC configurations to Azure virtual machines via ARM templates. But I like the pull mechanisms for life cycle management just a bit more as we can update the DSC config and push it out when needed. So, that’s all good, but under certain conditions, you can get the following error: Cannot connect to CIM server. The specified service does not exist as an installed service.

When can you get into this pickle?

DSC itself is PowerShell, and that comes in quite handy. Sometimes, the logic you use inside DSC blocks is insufficient to get the job done as needed. With PowerShell, we can leverage the power of scripting to get the information and build the logic we need. One such example is formatting data disks. Configuring network interfaces would be another. A disk number is not always reliable and consistent, leading to failed DSC configurations.
For example, the block below is a classic way to wait for a disk, and when it shows up, initialize, format, and assign a drive letter to it.

xWaitforDisk NTDSDisk {
    DiskNumber = 2

    RetryIntervalSec = 20
    RetryCount       = 30
}
xDisk ADDataDisk {
    DiskNumber = 2
    DriveLetter = "N"
    DependsOn   = "[xWaitForDisk]NTDSDisk"
} 

The disk number may vary depending on whether your Azure virtual machine has a temp disk or not, or if you use disk encryption or not can trip up disk numbering. No worries, DSC has more up its sleeve and allows to use the disk id instead of the disk number. That is truly unique and consistent. You can quickly grab a disk’s unique id with PowerShell like below.

xWaitforDisk NTDSDisk {
    DiskIdType       = 'UniqueID'
    DiskId           = $NTDSDiskUniqueId #'1223' #GetScript #$NTDSDisk.UniqueID
    RetryIntervalSec = 20
    RetryCount       = 30
}

xDisk ADDataDisk {
    DiskIdType  = 'UniqueID'
    DiskId      = $NTDSDiskUniqueId #GetScript #$NTDSDisk.UniqueID
    DriveLetter = "N"
    DependsOn   = "[xWaitForDisk]NTDSDisk"
}

Powershell in compilation error

So we upload and compile this DSC configuration with the below script.

$params = @{
    AutomationAccountName = 'MyScriptLibrary'
    ResourceGroupName     = 'WorkingHardInIT-RG'
    SourcePath            = 'C:\Users\WorkingHardInIT\OneDrive\AzureAutomation\AD-extension-To-Azure\InfAsCode\Up\App\PowerShell\ADDSServer.ps1'
    Published             = $true
    Force                 = $true
}

$UploadDscConfiguration = Import-AzAutomationDscConfiguration @params

while ($null -eq $UploadDscConfiguration.EndTime -and $null -eq $UploadDscConfiguration.Exception) {
    $UploadDscConfiguration = $UploadDscConfiguration | Get-AzAutomationDscCompilationJob
    write-Host -foregroundcolor Yellow "Uploading DSC configuration"
    Start-Sleep -Seconds 2
}
$UploadDscConfiguration | Get-AzAutomationDscCompilationJobOutput –Stream Any
Write-Host -ForegroundColor Green "Uploading done:"
$UploadDscConfiguration


$params = @{
    AutomationAccountName = 'MyScriptLibrary'
    ResourceGroupName     = 'WorkingHardInIT-RG'
    ConfigurationName     = 'ADDSServer'
}

$CompilationJob = Start-AzAutomationDscCompilationJob @params 
while ($null -eq $CompilationJob.EndTime -and $null -eq $CompilationJob.Exception) {
    $CompilationJob = $CompilationJob | Get-AzAutomationDscCompilationJob
    Start-Sleep -Seconds 2
    Write-Host -ForegroundColor cyan "Compiling"
}
$CompilationJob | Get-AzAutomationDscCompilationJobOutput –Stream Any
Write-Host -ForegroundColor green "Compiling done:"
$CompilationJob

So, life is good, right? Yes, until you try and compile that (DSC) configuration in Azure Automation State Configuration. Then, you will get a nasty compile error.

Cannot connect to CIM server. The specified service does not exist as an installed service

“Exception: The running command stopped because the preference variable “ErrorActionPreference” or common parameter is set to Stop: Cannot connect to CIM server. The specified service does not exist as an installed service.”

Or in the Azure Portal:

Cannot connect to CIM server. The specified service does not exist as an installed service

The Azure compiler wants to validate the code, and as you cannot get access to the host, compilation fails. So the configs compile on the Azure Automation server, not the target node (that does not even exist yet) or the localhost. I find this odd. When I compile code in C# or C++ or VB.NET, it will not fail because it cannot connect to a server and validate my code by crabbing disk or interface information at compile time. The DSC code only needs to be correct and valid. I wish Microsoft would fix this behavior.

Workarounds

Compile DSC locally and upload

Yes, I know you can pre-compile the DSC locally and upload it to the automation account. However, the beauty of using the automation account is that you don’t have to bother with all that. I like to keep the flow as easy-going and straightforward as possible for automation. Unfortunately, compiling locally and uploading doesn’t fit into that concept nicely.

Upload a PowerShell script to a storage container in a storage account

We can store a PowerShell script in an Azure storage account. In our example, that script can do what we want, find, initialize, and format a disk.

Get-Disk | Where-Object { $_.NumberOfPartitions -lt 1 -and $_.PartitionStyle -eq "RAW" -and $_.Location -match "LUN 0" } |
Initialize-Disk -PartitionStyle GPT -PassThru | New-Partition -DriveLetter "N" -UseMaximumSize |
Format-Volume -FileSystem NTFS -NewFileSystemLabel "NTDS-DISK" -Confirm:$false

From that storage account, we download it to the Azure VM when DSC is running. This can be achieved in a script block.

$BlobUri = 'https://scriptlibrary.blob.core.windows.net/scripts/DSC/InitialiseNTDSDisk.ps1' #Get-AutomationVariable -Name 'addcInitialiseNTDSDiskScritpBlobUri'
$SasToken = '?sv=2021-10-04&se=2022-05-22T14%3A04%8S67QZ&cd=c&lk=r&sig=TaeIfYI63NTgoftSeVaj%2FRPfeU5gXdEn%2Few%2F24F6sA%3D'
$CompleteUri = "$BlobUri$SasToken"
$OutputPath = 'C:\Temp\InitialiseNTDSDisk.ps1'

Script FormatAzureDataDisks {
    SetScript  = {

        Invoke-WebRequest -Method Get -uri $using:CompleteUri -OutFile $using:OutputPath
        . $using:OutputPath
    }

    TestScript = {
        Test-Path $using:OutputPath
    }

    GetScript  = {
        @{Result = (Get-Content $using:OutputPath) }
    }
} 

But we need to set up a storage account and upload a PowerShell script to a blob. We also need a SAS token to download that script or allow public access to it. Instead of hardcoding this information in the DSC script, we can also store it in automation variables. We could even abuse Automation credentials to store the SAS token securely. All that is possible, but it requires more infrastructure, maintenance, security while integrating this into the DevOps flow.

PowerShell to generate a PowerShell script

The least convoluted workaround that I found is to generate a PowerShell script in the Script block of the DSC configuration and save that to the Azure VM when DSC is running. In our example, this becomes the below script block in DSC.

Script FormatAzureDataDisks {
    SetScript  = {
        $PoshToExecute = 'Get-Disk | Where-Object { $_.NumberOfPartitions -lt 1 -and $_.PartitionStyle -eq "RAW" -and $_.Location -match "LUN 0" } | Initialize-Disk -PartitionStyle GPT -PassThru | New-Partition -DriveLetter "N" -UseMaximumSize | Format-Volume -FileSystem NTFS -NewFileSystemLabel "NTDS-DISK" -Confirm:$false'
        $ PoshToExecute | out-file $using:OutputPath
        . $using:OutputPath
    }
    TestScript = {
        Test-Path $using:OutputPath 
    }
    GetScript  = {
        @{Result = (Get-Content $using:OutputPath) }
    }
}

So, in SetScript, we build our actual PowerShell command we want to execute on the host as a string. Then, we persist to file using our $OutputPath variable we can access inside the Script block via the $using: OutputPath. Finally, we execute our persisted script by dot sourcing it with “. “$using:OutputPath” In TestScript, we test for the existence of the file and ignore the output of GetScript, but it needs to be there. The maintenance is easy. You edit the string variable where we create the PowerShell to save in the DSC configuration file, which we upload and compile. That’s it.

To be fair, this will not work in all situations and you might need to download protected files. In that case, the above will solutions will help out.

Conclusion

Creating a Powershell script in the DSC configuration file requires less effort and infrastructure maintenance than uploading such a script to a storage account. So that’s the pragmatic trick I use. I’d wish the compilation to an automation account would succeed, but it doesn’t. So, this is the next best thing. I hope this helps someone out there facing the same issue to work around the error: Cannot connect to CIM server. The specified service does not exist as an installed service.