In place upgrade of RD Gateway farm nodes to Windows Server 2016 removes the Loopback adapter for UDP load balancing

Here’s a quick heads up to anyone who’s involved in upgrading existing Windows Server 2012 (R2) RD Gateway farms to Windows Server 2016.

In my recent experiences the in place upgrade (VMs) works rather well. Just make sure the netlogon service is set to automatic (a know issue and a fix is coming) after you upgrade and install all updates. Also make sure that you don’t have this issue

Windows Time Service settings are not preserved during an in-place upgrade to Windows Server 2016 or Windows 10 Version 1607

There is however one networks specific issue specific you’ll need to deal with when leveraging UDP with a load balancer via Direct Server Return.

When you have a RD Gateway farm you load balance it with a (preferably high available) load balancer like a Kemp Loadmaster. I have described this in these blogs/videos Load balancing Hyper-V Workloads With High To Continuous Availability With a KEMP Loadmaster and Quick Demo Video Of Site Failover With KEMP Loadmaster Global Balancing

What you also do is load balance both HTTPS (TCP, port 443) and UDP (port 3391). For UDP we use Direct Server Return ((DSR) as described in my blog post Load balancing UDP for a RD Gateway farm with a KEMP Loadmaster. This requires a properly configured loopback adapter.

image

During the in place upgrade to Windows Server 2016 this loopback adapter is removed form the nodes. So you need to add it back just a described in my original blog post. Normally it will find the settings for it in the registry but it’s bets you check it all out as I’ve found that the loopback adapter did have “Register this connection”s address in DNS” enabled as well as NETBIOS over TCP/IP. So, per my blog post, check it all to make sure. Other than that, after installing all the Windows Server 2016 updates all works smoothly after an in place upgrade.

Hope this helps someone out there!

Hyper-V Amigos Showcast Episode 12–ReFS v3.1 and Backup

In this Episode Carsten and I look at a single host deployment with Storage Spaces on Windows Server 2016. We create a “Hybrid” disk just like in Storage Spaces Direct by combining SSD & HDD in a storage Tier. We were very happy to discover that ReFSv3.1 does real time tiering.

image

We’re very excited about this because we want to leverage the benefits if Veeam Backup & Replication 9.5 brings by leveraging ReFSv3.1 (Block Cloning) in regards to backup transformation actions and Grandfather-Father-Son (GFS) spaces savings. To do so we’re looking at our options to get these benefits and capabilities leveraging affordable yet performant storage for our backup targets. S2D is one such option but might be cost prohibitive or overkill in certain environments.

ReFS v3.1 on non-clustered Windows Server 2016 hosts bring us integrity streaming, file corruption repair with instant recovery as protection against bit rot, the performance of tiered storage and SMB3 as a backup target at a great price point.

We encourage you to watch the video and see for yourself. As always, we had fun and hope your can learn something together with us, the Hyper-V Amigos Smile

Easily migrating non-AD integrated DNS servers while preserving server names and IP addresses

Introduction

I’ll show you the quickest way to move an existing public advertising DNS deployment on Windows Server 2012R2, generation 1 virtual machines (1 primary DNS server and 1 or more secondary DNS Servers) to Windows 2016 RTM generation 2 VMs. On top of this we will preserve the sever names and the IP addresses. This makes the migration easier and it doesn’t burden anyone with updating IP addresses or FQDN of services pointing to the existing public advertising DNS service. Basically the result is the best possible for everyone involved.

Step by Step

We start by preparing a sysprepped VHDX of Windows 2016 with all the updates installed and any tools that are sysprep compatible and that you want or need on your VMs. This will allow us to make the move fast. As we want our new DNS VMs to be generation 2 VMS, make sure you use a generation 2 VM to create the syprepped OS VHDX.

The process we describe below is the same for each of the involved DNS servers. You start with the secondary VMs and end with the primary VM. This is just a form risk reduction, it’s smart to start with the secondary as it’s less critical than the primary where you make the changes.

Log on to the old, source VM and do the following

  1. Create a Folder to store the migration data and Info, i.e. C:\DNSMigrateServer01
  2. Open an elevated command prompt
  3. Run Ipconfig /all > C:\DNSMigrateServer01\Server01TCPIPinfo.txt this gives you the IP info you need for future reference.
  4. Run reg export HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\DNS\Parameters C:\DNSMigrateServer01\Dns-Service.REG
  5. Run reg export HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\DNS Server” C:\DNSMigrateServer01\Dns-Software.REG
  6. In some cases, rarely for most deployments, you’ll need to also copy all files under each custom database directory on the old DNS server by manually reading from the registry at the following path: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\DNS\Parameters\DatabaseDirectory If you have these also copy the directory to C:\DNSMigrateServer01. Normally when you have custom DNS database locations this is not by accident and should be well documented.
  7. Run xcopy %windir%\system32\dns C:\DNSMigrateServer01 /s This copies the content of your DNS folder (normally C:\Windows\System32\dns) to your migration folder. Note that you don’t need to copy the samples sub folder. Even the backup folder is not really needed. Just create a new backup when needed on the news DNS servers.
  8. Copy the C:\DNSMigrateServer01 from your old DNS Server to your desktop or some file share for safe keeping. You’ll need to copy this into the new DNS Server later. Note it contains your IP information, your registry exports and your DNS files.

You now have everything you need form the old DNS Server. So now we’ll decommission it, but before we do so we’ll make sure we have the options to recover it if needed.

  1. Make sure you have a backup or have made on recently (you do trust your ability to restore, right?)
  2. Shut down the VM and for good measure and fast recovery you might want to export the VM for quick import.
  3. Remove the VM from Failover Clustering if it’s clustered.
  4. Now remove the VM from Hyper-V Manager. Note this doesn’t delete the virtual disk files.
  5. Remove the old VHDX (you have an export and a backup) and replace it with your sysprepped W2K16RTM VHDX that has all the updates already. Rename that VHDX to something sensible like server01disk01.vhdx.
  6. Create a new generation 2 VM with the same name as the old one, select the required memory settings, choose to use an existing VHDX and point it to your sysprepped VHDX.
  7. Start the VM
  8. Go through the mini wizard and log in to it.
  9. Configure the NIC with the same setting as your old DNS Server
  10. Rename the VM to the old DNS VM name and join the domain.
  11. Restart the VM
  12. Login to the new DNS VM
  13. Install DNS
  14. Copy the C:\DNSMigrateServer01 you saved from your old DNS Server into the new one
  15. Open an elevated command prompt and run
    • Stop the DNS Server service by running net stop “DNS Server”
    • Double click the Dns-Service.REG and merge them into the registry

clip_image001

    • Double click the Dns-Software.REG files and merge them into the registry.

clip_image002

    • Copy all the files under C:\DNSMigrateServer01 to %windir%\System32\DNS
    • Start the DNS Server service by running net start “DNS Server”

Congratulations, you now have a new generation 2 VM running DNS on Windows Server 2016 with the same name and IP configuration as the old one. You now want to validate it’s working. To do so on the primary DNS server update the serial number in the start of authority (SOA) tab of the zone properties. I normally use YearMonthDayXX.

clip_image003

This will allow you to check whether the zone transfers to your migrated DNS server work. Normally all is just fine. In case things went horribly wrong you can import the VMs you exported or restore the backups. If your VMs are domain members and as you have reused the VM name, you’ll need to reestablish its domain member ship but that’s easily done.

Now repeat the above process for all the reaming secondary DNS Server and finally for the primary DNS server. Until you’ve done them all.

Conclusion

You do this process for every DNS Server and finally for your primary DNS server. That’s it. You’re in business and you have achieved 2 goals. You’re DNS VMs have been move to generation 2 and are running on a clean install of Windows Server 2016. All this without having to reconfigure DNS zone and transfers and while maintaining your DNS server names and IP addresses. Life is good.

In Place upgrades of cluster nodes to Windows Server 2016

You will all have heard about rolling cluster upgrades from Windows Server 202 R2 to Windows Server 2016 by now. The best and recommend practice is to do a clean install of any node you want to move to Windows Server 2016. However an in place upgrade does work. Actually it works better then ever before. I’m not recommending this for production but I did do a bunch just to see how the experience was and if that experience was consistent. I was actually pleasantly surprised and it saved me some time in the lab.

Today, if you want to you can upgrade your Windows Server 2012 R2 hosts in the cluster to Windows Server 2016.

The main things to watch out for are that all the VMs on that host have to be migrated to another node or be shut down.

You can not have teamed NICs on the host. Most often these will be used for a vSwitch, so it’s smart and prudent to note down the vSwitch (or vSwitches) name and remove them before removing the NIC team. After you’ve upgraded the node you can recreate the NIC team and the vSwitch(es).

Note that you don’t even have to evict the node from the cluster anymore to perform the upgrade.

image

I have successfully upgrade 4 cluster this way. One was based on PC hardware but the other ones where:

  • DELL R610 2 node cluster with shared SAS storage (MD3200).
  • Dell R720 2 node cluster with Compellent SAN (and ancient 4Gbps Emulex and QLogic FC HBAs)
  • Dell R730 3 node cluster with Compellent SAN (8Gbps Emulex HBAs)

Naturally all these servers were rocking the most current firmware and drives as possible. After the upgrades I upgraded the NIC drivers (Mellanox, Intel) and the FC drivers ‘(Emulex) to be at their supported vendors drivers. I also made sure they got all the available updates before moving on with these lab clusters.

Issues I noticed:

  • The most common issue I saw was that the Hyper-V manager GUI was not functional and I could not connect to the host. The fix was easy: uninstall Hyper-V and re-install it. This requires a few reboots. Other than that it went incredibly well.
  • Another issue I’ve seen with upgrade was that the netlogon service was set to manual which caused various issues with authentication but which is easily fixed. This has also been reported here. Microsoft is aware of this bug and a fixed is being worked on.

 

.