DELL Has Great Windows Server 2012 R2 Feature Support – Consistent Device Naming–Which They Help Develop

The issue

Plug ‘n Play enumeration of devices has been very useful for loading device drivers automatically but isn’t deterministic. As devices are enumerated in the order they are received it will be different from server to server but also within the system. Meaning that enumeration and order of the NIC ports in the operating system may vary and “Local Area Connection 2” doesn’t always map to port 2 on the  on board NIC. It’s random. This means that scripting is “rather hard” and even finding out what NIC matches what port is a game of unplugging cables.

Consistent Device Naming is the solution

A mechanism that has to be supported by the BIOS was devised to deal with this and enable consistent naming of the NIC port numbering on the chassis and in the operating system.

But it’s even better. This doesn’t just work with on board NICs. It also works with add on cards as you can see. In the name column it identifies the slot in which the card sits and numbers the ports consistently.

In the DELL 12th Generation PowerEdge Servers this feature is enabled by default. It is not in HP servers for some reason, you need to turn in it on manually.

I first heard about this feature even before Windows Server 2012 Beta was released but as it turns out Dell has been involved with the development of this feature. It was Dell BIOS team members that developed the solution to consistently name network ports and had it standardized via PCI SIG.  They also collaborated with Microsoft to ensure that Windows Server 2012 would support all this.

Here’s a screen shot of a DELL R720 (12th Generation PowerEdge Server) of ours. As you can see the Consistent Device Naming doesn’t only work for the on broad NIC card. It also does a fine job with add on cards of which we have quite a few in this server.image

It clearly shows the support for Consistent Device Naming for the add on cards present in this server. This is a test server of ours (until we have to take it into production) and it has a quad 1Gbps Intel card, a dual Intel X520 DA card and a dual port Mellanox 10Gbps RoCE card. We use it to test out our assumptions & ideas. We still need a Chelsio iWarp card for more testing mind you Winking smile

A closer look

This solution is illustrated the in the “Device Name column” in the screen shot below. It’s clear that the PnP enumerated name (the friendly name via the driver INF file) and the enumerated number value are very different from the number in Name column ( NIC1, NIC2, NIC2, NIC4) even if in this case where by change the order is correct. If the operating system is reinstalled, or drivers changed and the devices re-enumerated, these numbers may change as they did with previous operating systems.

image

The “Name” column is where the Consistent Device Naming magic comes to live. As you can see you are able to easily identify port names as they are numbered consistently, regardless of the “Device Name” column numbering and in accordance with the numbering on the chassis or add on card. This column name will NEVER differ between identical servers of after reinstalling a server because it is not dependent on PnP. Pretty cool isn’t it! Also note that we can rename the Name column and if we choose we can keep the original name in that one to preserve the mapping to the physical hardware location.

In the example below thing map perfectly between the Name column and the Device Name column but that’s pure luck.image

On of the other add on cards demonstrates this perfectly.image

Where Does Storage QoS Live In Windows Server 2012 R2 Hyper-V

Back to basics to explain where storage QoS lives and how it works

In Windows Server 2012 R2 Hyper-V (and earlier) we have Hyper-V components called Virtualization Service Provider (VSP) and Virtualization Service Clients (VSC). In combination with the VMBUS the VSP and VSC components are what make virtualization perform well on Hyper-V.The Stor VSP/VSC are were the maximum IOPS functionality lives, aka as QoS Limit.

In a hosted hypervisor like Virtual PC or in a bare metal hypervisor without any “enlightment” the operating system inside a virtual machine is blissfully unaware of the fact it virtualized. Basically it sends hardware access requests using native drivers, but the requests are received by the virtual layer that intercepts them on behalf of the host OS by emulating hardware devices. This comes at a cost, namely performance, latency and losing device specific functionality.

In Hyper-V Microsoft provides the Integration Services (IS) for virtual machines running on Hyper-V which, in combination with the VMBus, avoids this overhead. So you should ways use them where and when possible. Two of the components in the IS are VSP and VSC. They are responsible for the communication between the Host OS or Parent Partition (where the VSP lives) and the Guest OS or Child Partition (where the VSC lives).

image

There are 4 VSP & VSC components: Network, Video, HID and Storage. As you probably guessed we’re interested in the storage VSP & VSC (storVSP.sys & storvsc.sys) for the discussion at hand. While the Stor VSP lives in the host OS and the Stor VSC in the guest OS of every VM running on the host they communicate over the VMBus we mentioned and is designed to make communications as fast as possible (it’s a communication protocol that runs in memory, i.e. it’s very fast).

image

The Minimum IOPS, also known as the Reserve is set per virtual disk but the threshold alerts for it are generated by the VHDMP. This is the VHD/VHDX parser and dependency property provider and this know all about the VHD/VHDX format with in itself is again a file on storage (DAS, CSV, SMB 3.0 File Share). This also happens to be where the Storage IO Balancer lives with which it collaborates, more on that below. You now see why QoS is not available for pass-through disk or iSCSI/FC storage in a VM, it requires a VHDX and is implemented at the virtual disk layer.

The QoS Limit (Maximum IOPS) is set at the virtual disk level via the Stor VSC and the Qos Limiter lives in the Stor VSP.

image

So what do we know:

QoS Limit (Maximum IOPS) and QoS reserve (Minimum IOPS) are implemented at the virtual disk layer. So per VHDX in a particular VM.  It’s not available yet for shared VHDX, whether on the same host or not.

Unlike QoS Limit (Maximum IOPS), which is a hard cap, QoS reserve (Minimum IOPS) is a best effort not a hard minimum. It’s used to warn us, not as an enforcement. This works at the host level, where it will detect whether the VHDX can get get the minimum IOPS configured or not and can generate alerts if this happens. This tied to the QoS IO Balancer which is improved in R2 but it will still only spreads IOPS across multiple VMs on the same host, making sure they all get a fair share.

The key point here is that this process doesn’t work across multiple hosts in a cluster, over multiple clusters and stand alone member servers that might all be attached to the same storage system. Meaning that on shared, multi purpose storage we might have an issue. What if some VMs in a dedicated 4 node Hyper-V cluster dedicated to SQL Server virtualization is eating away all the IOPS. QoS IO Balancer will give each SQL Server VM a fair share of the IOPS but only within its host in that cluster. But if a VM on another host is consuming all IOPS, that’s out of it’s scope  That’s where the max cap comes to the rescue (at the virtual disk level) if you need it. Nice but not perfect. You can see now why the storage QoS minimum is implemented at the VHDMP layer, as this which is where the IO Balancer also lives. The fairness that the IO Balancer gives you a better change that the minimal reserve might be met and if it doesn’t you’ll get notified (you need to listen an react, I hope that’s obvious).

Also don’t forget that if you still have other physical servers that run file services, SQL Server or some data crunching apps you will find that those are blissfully ignorant of your QoS IO Balancer at the Hyper-V host level and of your QoS at the Hyper-V virtual disk level.

There is no multiple host QoS, there is no cluster wide QoS and there is no storage wide QoS in Windows. Perhaps you have some QoS your SAN but most of the time this has no knowledge of Hyper-V, the cluster and the virtual machines.

So the above this gives you an idea where does Microsoft might focus it’s attention in regards to storage IOPS  management (there are many more storage capabilities on my wish list) in vNext.

Any other options available today?

Other options are storage that is smart and has knowledge about the workload. This is nice but that means that it will come at a cost. For the moment GridStore with it’s virtual controller seems to be one of the better ones out there. Now I have heard people say Microsoft doesn’t get it and they’re doing do a bad job, but I do not agree. I have spoken to many people in the community and at MSFT and they have stated, even publicly, on stage, that they will keep investing in storage feature to enhance it in the versions to come. Take a look here at TechEd 2013 Session  MDC-B345: Windows Server 2012 Hyper-V Storage Performance.

Why would I like Microsoft to keep improving storage

When talking to storage vendors serving our needs, I always have some feedback. A lot of the advanced storage features don’t always work well in real life, especially if you combine a few. Don’t believe me? Talk to some experienced Windows engineers about the sorry state of many hardware VSS providers. Or how federation across storage systems falls apart the moment you combine it with application consistent snapshots or put a real heavy load on it. Not to cool when you paid for all those licenses which are tuned into “lab only” toys. Yes sometimes as a Windows user you feel like a second class citizen in storage land. A lot of storage systems are still very much a silo. Attempts to do storage federation without a hit on performance, making it load balance across SAN building blocks whilst making all the advanced features that have knowledge of the OS and hypervisor work reliably are not moving as fast as the race for ever more IOPS.

Sure I love the notion of 2 million IOPS, especially if you can get them with random write/read IO at super low latencies Smile. But there are other, sometimes more urgent needs and those seem to fall between the cracks as the storage vendors compete with each other and forget about the needs of their customers. If some storage vendors would shut up long enough to listen to customers they might be less surprised as to why those customers are interested in Storage Spaces.

So it would be kind of nice if Microsoft can work on this an include more evolved storage QoS capabilities in the box. I also like that approach for other reasons. Basically we will do everything we can with what Windows offers us inbox. It’s cost effective as long as you keep the KISS principle in mind and design it consciously. I assure you that often too much money is spent on 3rd party software because people don’t leverage what they have in box and drop the 20/80 rule. We do and you get the best TCO/ROI for our licenses possible. We don’t spend extra money on licenses, integration and support of third party products so we can spend it where it matters the most. It also makes upgrades easier as the complexity and the number of dependencies are lower on pure in box solution.On top of that we minimalize the distinct possibility that one or more 3rd party products will hold us hostage in an older infrastructure because they don’t support new versions of Windows fast, good and complete enough for us to upgrade.

Adventures In RDMA – The RoCE Path Over DCB To Windows Server 2012 R2 SMB 3.0 Glory

Prologue

On gloomy day, it was dark, grey and cold, we gave battle with RoCE & DCB (PFC/ETS). The fight was a long one, the battle field uncharted and we had only our veteran attitude towards adversity to guide us through the switch configurations. It seemed that no man had gone that far to the edges of the Windows Server 2012 empire. And when it came to RoCE & DCB meets Didier, I needed to show it that it had been conquered and was remembered of a quote in Gladiator:

Quintus: People RoCE/DCB configs should know when they are conquered.
Maximus: Would you, Quintus? Would I?

image

After many, many lonely & unsuccessful hours dealing with Performance monitor, switch configurations, reloads, firmware, drivers & Windows we got results:

… “it’s working” … “holey s* look at those numbers” …

On that dark day in a scarcely illuminated room, in the faint glare of the monitors even the CLI  of the switches in PUTTY felt like a grim cold place. But all that changed at as the impressive results brightened up the day and made all efforts seem worthwhile. “Didier Victor” I thought as I looked away from the screen, ‘”Once more”.image

But it has been a hard won victory. And should you fight this battle? We’ll let’s discuss this a bit now we’ve got your attention. RDMA is a learning process for many of us and neither Infiniband,  iWARP or RoCE are the one that need to win at this game. It’s you, via the knowledge you’ll gain working with RDMA technologies.

SMB Direct or SMB over RDMA comes in flavors

Infiniband (Mellanox)

That’s been here for a while. Has high cost associated (depends on where you come from) and also has a psychological barrier to it. Try discussing buying 10Gbps versus Infiniband with semi technical managerial types. You’ll know what I mean.

Deploying Windows Server 2012 with SMB Direct (SMB over RDMA) and the Mellanox ConnectX-2/ConnectX-3 using InfiniBand – Step by Step

iWARP (Chelsio / Intel)

RDMA but it’s TCP/IP offloaded to the card. It can leverage DCB but doesn’t require it.

Deploying Windows Server 2012 with SMB Direct (SMB over RDMA) and the Chelsio T4 cards using iWARP – Step by Step

RoCE (Mellanox)

“Infiniband over Ethernet” > so you “NEED” (no not a real hard requirement) DBC with PFC/ETS (DCBx can be handy) for it to work best. No need for Congestion Notification as it’s for TCP/IP but could be nice with iWARP (see above). Do note that you’ll need to configure your switches for DCB & that’s highly dependent on the vendor & even type of switches.

Deploying Windows Server 2012 with SMB Direct (SMB over RDMA) and the Mellanox ConnectX-3 using 10GbE/40GbE RoCE – Step by Step

Here’s an older overview of RDMA flavor’s pros & cons:image

Please see Jose Barreto’s excellent work on explaining SMB 3.0 over RDMA in his presentations at SNIA, TechEd and on his blog.

While I have heard of two people I have in my network working with Infiniband for SMB Direct and Windows Server 2012 (R2) most of us are doing 10Gbps. Pricing for Infiniband has a bad reputation. Not because Infiniband is super costly compared to 10/40Gbps (I’m told by most people who ask quotes are positively surprised) but when you can’t afford a Porsche you’re not shopping for a Ferrari either.  Especially not when a mid size sedan will serve al of your needs above and beyond the call of duty. On top of that you might have bought all that nice “converged network ready” 10Gbps gear some years ago. Some of us may be working towards 40Gbps but most are 10Gbps shops. My 40Gbps is “limited” to the inter links & uplinks. Meaning that we either go for iWarp or RoCE.

RoCE or iWARP

Which one is best of those two? Well, as the line is drawn between vendors. RoCE today equals Mellanox (yes the Infiniband vendor, RoCE is sometimes called “Infiniband on layer 4 over Ethernet layer 2”) and iWarp means Chelsio or Intel (their cards look a bit old in the teeth however).

You’ll find comparisons by both vendors claiming superiority for varied reasons. Here’s the Mellanox side http://www.mellanox.com/pdf/whitepapers/WP_RoCE_vs_iWARP.pdf & here’s Chelsio’s take http://www.chelsio.com/roce/ & http://www.moderntech.com.hk/sites/default/files/whitepaper/V09_iWAR_Summary_WP_0.pdf. It’s good to look at your needs and map them. But I cannot declare a winner. I did notice that at least one vendor of SOFS/CiB uses iWarp. Is that a statement? And if so about what? Price? Easy of use? Perfomance/Cost?

What I do find is that Chelsio is really hacking into RoCE as you can see here http://www.chelsio.com/wp-content/uploads/2011/05/RoCE-The-Grand-Experiment1.pdf, http://www.chelsio.com/roce-whitepaper/, http://www.chelsio.com/wp-content/uploads/2011/05/RoCE-FAQ-1204121.pdf So that begs the question are the right or are the scared of RoCE, as the Infiniband boys are out to eat their lunch?

My take on this for now

iWarp is way easier to get started. That’s for sure. RoCE  is firmware sensitive (NIC, Switches), driver sensitive (NIC). Configuring your switches (DCB) now is usually followed by a rebooting that switch (so you might not do that so easily in production and depending on where in the stack those switches live you really need to Force10 VLT or Cisco vPC, Arista MLAG  or a independent redundant switches to get away with it. RoCE loves green field. Stacking I hear you say? I don’t like stacking on that spot of the stack as firmware updates will get you to suffer through a single point of failure.

Disclaimer: RoCE in itself does not  DEMAND/REQUIRE DCB but the consensus is that it will work better, especially under heavy load. Weather SMB Direct over RoCE requires DCB is another question. For all practical purposes I’m working from the prerequisite it does for a production environment. But as you can do RoCE RDMA between to NIC with no DCB switch in between this indicates that the hard requirement for DCB is not there. Mind you not using DCB might not be smart in regards to QoS & error handling (no TCP/IP goodness handling this for you). But I’m no expert on this subject. Paul Grun however is and he’s involved with RoCE at  https://www.openfabrics.org/component/search/?searchword=Paul+grun&ordering=&searchphrase=all They tend to know their stuff. Read some of the comments below this article and you’ll know a lot http://www.hpcwire.com/hpcwire/2010-04-22/roce_an_ethernet-infiniband_love_story.html But PFC isn’t Walhalla either and some claim you can just forget about it and build non blocking networks. I guess you could if your pockets are deep enough Smile. And you might go a very long way without the need for RDMA. Many do … and when you talk to some network people & vendors they can’t agree either as everyone is on the same learning curve but from a different perspective. There is no one size fits all & it all depends.

iWarp doesn’t require DCB so you can get away with cheaper switches. Or, not so cheap switches that don’t support DCB (choose wisely). So cheaper switches is probably true on the low end. But, even very economically priced switches from DELL have good DCB support. Some other vendors who are more expensive don’t.

DCB is uncharted terrain for SMB Direct purposes & new to many for us. So if you want to do RDMA the easy way  … go iWARP. As said, the use of DCB for PFC/ETS is not mandatory in that case, you’ll get great results and it’s easy.  Mind you, you’ll still be dabbling with DCB if you want to do lossless magic in the switches Smile. Why you say? Well, that “converged network” story makes it kind of interesting to do so and PFC, DCBx/TLV is generic and can be leveraged for other things than iSCSI or FCoE.  And for all practical purposes SMB 3.0 with SMB Direct is a storage protocol since Windows Server 2012 made it so (CSV). Or do you do DCB for iSCSI/FCoE & iWarp for SMB Direct? After all there’s only 2 lossless queues to be had. But hey how many do you need? Choices, choices and no vast pool of experienced practitioners yet.

iWARP routes, it’s not bound by a single Ethernet broadcast domain. That could be useful info depending on your environment & needs. I’ll note that I leverage RDMA for East-West traffic, not north south & as such this could not be an issue. The time that I do “Shared Nothing Live Migration" from on premise to the cloud has not arrived yet.

The Mellanox cards in my neck of the woods were 35% cheaper than Chelsio (SFP+)

What about the scalability? “iWarp doesn’t scale that well” is stated left and right but I think that might often be based on older information. Chelsio makes a strong case for iWARP scalability. Especially when it comes to long distances, multiple hops & routing.

Again, your mileage may vary. But for “the smaller environments” who want to leverage RDMA with SMB 3.0 I’d say that iWarp is the easiest path to go & will do just fine. Now if you’re already into lossless Ethernet for iSCSI or working with FCoE you might have all the hardware you need & the experience to deal with DCB. The latter might not always be true however. Most people have Lossless Ethernet for iSCSI or FCoE set up by the vendor or consultants who’ll use well defined step by step guides. These do not exist for the RoCE variant of SMB 3.0 over RDMA.

The case for RoCE can be made as well.  Some claim that high volume of connections consumes memory when using iWARP and TCP’s flow and reliability controls are less suited for large-scale datacenters & cloud deployments due to performance issues. Where iWARP does not know multicast, RoCE does and that could be important to you.

So why did I or still do RoCE?

So why did I walk the walk? Basically because just talking the talk isn’t enough. We considered it an investment in our education. DCB is not going away (the abstraction isn’t their yet and won’t be for a while) and we need to gain knowledge of it to both handle it and make informed decisions. By the way once you go to lossless you might leverage DCB/PFC with iWarp as well just like you do for iSCSI to make it lossless (leveraging DCBx/TLV). Keep in mind that DCB is key in converged networking and as such deserves your attention. That’s why I chose not to avoid it but gave battle. DCB is all over the place when it comes to converged networking (iSCSI, FCoE), so we need to learn the good, the bad and the ugly. Until that day that perhaps, the hardware stack is that good, powerful & has so much bandwidth TCP/IP never needs it built in protection for packet loss. Hmmmmmm, I remember people saying that about 10Gbps, but then they wanted to send everything over 2*10Gbps pipes and it becomes an issue again?

It’s early days yet but you have to give credit to Microsoft for getting RDMA/DCB on the radar screen of the worlds virtualization & storage admins than ever before. It’s not a well established segment yet and it will be interesting to see how this all turns out. I do know that now that I’ve figured out a thing or two about RoCE, I won’t be intimidated & won’t make choices out of fear. And do remember that if you have plenty of idle CPU cycles & 10Gbps you might not even need RDMA. The value for me and my employers is the knowledge gained. DCB has it’s role to play but we’ll leverage iWARP or RoCE without a preference. Today you have 2 choices. RoCE is the newer one while iWarp has been around longer and both have avid proponents it seems.

I know one thing. If you need or want RDMA in any existing 10Gbps environment with minimal effort & no risk to existing switch infrastructure, you’ll use iWarp it seems.

Epilogue

You sit there staring at a truckload of VMs with 120GB of memory assigned in total being evacuated in +/- 70 seconds seconds, while doing a Shared Nothing Live Migration between the same hosts and without consuming CPU load …  and have DCB for SMB 3.0 running on your switches … Yes!

image

Remember, “What we do in life, echo’s in eternity” Winking smile You might think now that I’m a bit nutty, but I assure you that in my quest to find someone who had hands on experience configuring DCB on switches for SMB Direct with RoCE I had to turn to myself as no one seems to have done it.  I’ll be sharing more info on our setup and configurations in the future. Once you wrap your head around the concepts, you understand why things are done and how. There in lies the value for me.

Future Proofing Storage Acquisitions Without A Crystal Ball

Dealing with an unknown future without a crystal ball

I’ve said it before and I’ll say it again. Storage Spaces in Windows Server 2012 (R2) is are the first steps of MSFT to really make a difference (or put a dent into) in the storage world. See TechEd 2013 Revelations for Storage Vendors as the Future of Storage lies With Windows 2012 R2 (that was a nice blog by the way to find out what resellers & vendors have no sense of humor & perspective). It’s not just Microsoft who’s doing so. There are many interesting initiatives at smaller companies to to the same. The question is not if these offerings can match the features sets, capabilities and scenario’s of the established storage vendors offerings. The real question is if the established vendors offer enough value for money to maintain themselves in a good enough is good enough world, which in itself is a moving target due to the speed at which technology & business needs evolve. The balance of cost versus value becomes critical for selecting storage. You need it now and you know you’ll run it for 3 to 5 years. Perhaps longer, which is fine if it serves your needs, but you just don’t know. Due to speed of change you can’t invest in a solution that will last you for the long term. You need a good fit now at reasonable cost with some headway for scale up / scale out. The ROI/TCO has to be good within 6 months or a year. If possible get a modular solution. One where you can replace the parts that are the bottle neck without having to to a fork lift upgrade. That allows for smaller, incremental, affordable improvements until you have either morphed into a new system all together over a period of time or have gotten out of the current solution what’s possible and the time has arrived to replace it. Never would I  invest in an expensive, long term, fork lift, ultra scalable solution. Why not. To expensive and as such to high risk. The risk is due to the fact I don’t have one of these:

http://trustbite.co.nz/wp-content/uploads/2010/01/Crystal-Ball.jpg

So storage vendors need to perform a delicate balancing act. It’s about price, value, technology evolution, rapid adoption, diversification, integration, assimilation & licensing models in a good enough is good enough world where the solution needs to deliver from day one.

I for one will be very interested if all storage vendors can deliver enough value to retain the mid market or if they’ll become top feeders only. The push to the cloud, the advancements in data replication & protection in the application and platform layer are shaking up the traditional storage world. Combine that with the fast pace at which SSD & Flash storage are evolving together with Windows Server 2012 that has morphed into a very capable storage platform and the landscape looks very volatile for the years to come. Think about  ever more solutions at the application (Exchange, SQL server) and platform layer (Hyper-V replica) with orchestration on premise and/or in the cloud and the pressure is really on.

So how do you choose a solution in this environment?

Whenever you are buying storage the following will happen. Vendors, resellers & sales people, are going to start pulling at you. Now, some are way better than others at this, some are even down right good at this whole process a proceed very intelligently.

Sometimes it involves FUD, doom & gloom combined with predictions of data loss & corruption by what seem to be prophets of disaster. Good thing is when you buy whatever they are selling that day, they can save you from that. The thing is this changes with the profit margin and kickbacks they are getting. Sometimes you can attribute this to the time limited value of technology, things evolve and todays best is not tomorrows best. But some of them are chasing the proverbial $ so hard they portray themselves as untrustworthy fools.

That’s why I’m not to fond of the real big $ projects. Too much politics & sales. Sure you can have people take care of but you are the only one there to look out for your own interests. To do that all you need to do is your own due diligence and be brave. Look, a lot of SAN resellers have never ever run a SAN, servers, Hyper-V clusters, virtualized SQL Server environments or VDI solutions in your real live production environments for a sustained period of time. You have. You are the one whose needs it’s all about as you will have to live and work with the solution for years to come.  We did this exercise and it was worth while. We got the best value for money looking out for our own interests.

Try this with a reseller or vendor. Ask them about how their hardware VSS providers & snapshot software deals with the intricacies of CSV 2.0 in a Hyper-V cluster. Ask them how it works and tell them you need to references to speak to who are running this in production. Also make sure you find your own references. You can, it’s a big world out there and it’s a fun exercise to watch their reactions Winking smile

As Aidan remarked in his blog on ODX–Not All SANs Are Created Equally

These comparisons reaffirm what you should probably know: don’t trust the whitepapers, brochures, or sales-speak from a manufacturer.  Evidently not all features are created equally.

You really have to do your own due diligence. Some companies can afford the time, expense & personnel to have the shortlisted vendors deliver a system for them to test. Costs & effort rise fast if you need to get a setup that’s comparable to the production environment. You need to device tests that mimic real life scenario’s in storage capacity, IOPS, read/write patterns and make sure you don’t have bottleneck outside of the storage system in the lab.

Even for those that can, this is a hard thing to do. Some vendors also offer labs at their Tech Centers or Solutions Centers where customers or potential customers can try out scenarios. No matter what options you have, you’ll realize that this takes a lot of effort. So what do I do? I always start early. You won’t have all the information, question & answers available with a few hours of browsing the internet & reading some brochures. You’ll also notice that’s there’s always something else to deal with or do, so give your self time, but don’t procrastinate. I did visit the Tech Centers & Solution Centers in Europe of short listed vendors. Next to that I did a lot of reading, asked questions and talked to a lot of people about their view and experiences with storage. Don’t just talk to the vendors or resellers. I talked a lot with people in my network, at conferences and in the community. I even tracked down owners of the shortlisted systems and asked to talk to them. All this was part of my litmus test of the offered storage solutions. While perfection is not of this world there is a significant difference between vendor’s claims and the reality in the field. Our goal was to find the best solution for our needs based on price/value and who’s capabilities & usability & support excellence materialized with the biggest possible majority of customers in the field.

Friendly Advice To Vendors

So while the entire marketing and sales process is important for a vendor I’d like to remind all of them of a simple fact. Delivering what you sell makes for very happy customers who’s simple stories of their experiences with the products will sell it by worth of mouth. Those people can afford to talk about the imperfections & some vNext wishes they have. That’s great as those might be important to you but you’ll be able to see if they are happy with their choice and they’ll tell you why.