Windows Server 2012 VHDX Thin Provisioning Benefits Explored

Thin Provisioning With Hyper-V

Windows Server 2012 provides thins provisioning at the virtual layer via the VHDX file format. It also provides it at the physical storage layer when your storage supports it. For the later don’t forget that this also means Storage Spaces! So even in environments where budgets are really tight you can leverage this on the physical storage now. So its not just for the feature rich SAN owners anymore Smile.

Even if you use a storage sub system that does not support thin provisioning at the physical layer you will benefit from this mechanism when you use dynamic VHDX files. Not only will these grow less but during shut down they shrink by the size of the empty blocks. Pretty cool! I do however see a potential risk for increased fragmentation. This has a negative impact on performance and needs defragmentation to remediate which also has an impact on IO performance. How much this is a concern depends on your environment and needs. We’ll also have to see in real life how well dynamic VHDX files live up to their performance improvements they got with Windows Server 2012 to entice more people to use this. You have proponents and naysayers. I’m selective and let the circumstances and needs/requirements decide.

Thin Provisioning at the Virtual Layer

You can take a look at the TechEd 2012 session VIR301 by Senthil Rajaram to see how VHD versus VHDX behaves in regards to thin provisioning. I will not repeat all of this here. What I am going to do is look at some other situations.

Important note: You get this UNMAP feature automatically in Windows. There’s no need to manually run the Optimize-Volume command we’ll use in the scenarios below. It’s run automatically for us when the standard Defrag scheduled task runs or during the NTFS check pointing mechanisms that sends the info down every 5 minutes.  So these will normally take care of all that. But the defrag “only” runs every week by default you might want to tweak it or create your own scheduled task in your environment if needed. In demos and labs we’re rather inpatient geeks so even the 5 minute interval for the check pointing mechanisms are to long so we run “Optimize-Volume  -DriveLetter X –ReTrim” to get immediate gratification while testing. In real life it’s zero touch feature, you don’t need to baby sit it.

Fixed VHDX versus Dynamic VHDX

Apart from the fact that you’ll have no shrink on shutdown this optimization does nothing for the file size. The only benefit here is that the UNMAP can be passed to the physical storage where it can help if that supports it. At the virtual layer it doesn’t matter for a fixed sized VDHX disk.

Dynamic VHDX Disk

You’ll profit from the savings in storage when the dynamically expanding VHDX file doesn’t need to grow as much this. This reduces the overhead of expanding the disk, which is a performance benefit and it even helps your non thin provisioning capable storage go further.

Watch Senthil’s presentation (from around minute 20) to see the benefits in action. With VHDX, If you “shift delete” the files inside the VM, then run “Optimize-Volume -DriveLetter X –ReTrim” or  the defrag job and then copy new files  you’ll see that there is no additional file growth as long as you don’t exceed the current size of the VHDX. If you don’t do this both the VHD and VHDX file will grow.

But is another potential benefit why this might be important. Even with the block sizes that have been increased to have less overhead when growing dynamic VDHX files we still have to deal with fragmentation of the VHDX files on the storage where they live. The better/more empty blocks are reused, the less the dynamic files will have to grow. This means you’ll have less opportunity for fragmentation. Whether this compensates for potential of more fragmentation due to the shrinking when they are shutdown I don’t know. If all the performance improvements for dynamic disks are good enough will depend on your environment and needs. Defragmentation can help mitigate this but IO performance during the defragmentation process suffers. Do it or better, schedule it, wisely!

Virtual SCSI controller attached versus virtual IDE controller attached

What about a guest (boot) VHDX disk attached to an IDE controller? I see a lot of one disk virtual machines out there, so it would be a pity if it didn’t work for those and just for the one who have extras vSCSI disk attached.So let’s test this.

image

Below you see the disk size of the VHD and VHDX files and what type of controller they are attached to. As you can see this they had one or two 3.3 GB ISO files copied to them and where then “shift deleted”. The size of the VHD(X) files reflects the amount of data that they stored.

image

Now after running the defrag job or executing “Optimize-Volume -DriveLetter X –ReTrim” inside the VM you’ll see the results below after you shut down the VM

image

So as it turns out, the thin provisioning benefits it work with an IDE attached VHDX files as well! Yes inside a Windows Server 2012 virtual machine you get the UNMAP support with IDE attached VHDX disks to. Think of Hosting companies with many thousands single disk virtual machines who can leverage this as well. So this is something you might not expect when having watch the video as there they only talk about virtual SCSI/ FC controllers.

Conclusion

Doing tests like these are a bit artificial but they do demonstrate how the technology works. In real life it will translate into efficiencies over time, based on the data creation and deletion in your VHDX files. Think about hundreds or thousands of virtual machines in your environment leveraging this mechanism. Over time, on that scale, the amount of storage consumed will be reduced which results in better economies. Now leverage that together with thin provisioning support in Storage Spaces and you see that there are some very interesting scenarios to investigate. Some how it’s starting to look like you can have your cookie and eat it to Smile. You don’t need an expensive SAN to get these efficiencies at the physical storage layer, but if you have and use to have to mess around with sdelete or agents, it’s easy to see the benefit you get from this here as well.

First Windows Server 2012 Cluster/Hyper-V related Patches

With November 2012 Patch Tuesday having come and gone, the first hotfixes (it’s a cumulative update) related to Windows Server 2012 are available. These are relevant to both Hyper-V & Failover clustering (Scale Out File Server)  There is also an older hotfix that has been brought to our attention that related to certain versions Windows Server 2008/R2 domain controllers,which is also important for Windows Server 2012 Clustering. None of these are urgent/critical and only apply in specific circumstances but it’s good to keep up with these and protect your environment..

Windows 8 and Windows Server 2012 cumulative update: November 2012

http://support.microsoft.com/kb/2770917: A collection of small changes – for HA VMs (Hyper-V on Cluster) there are three minor CSV file system fixes in this Hotfix : Improves clustered server performance and reliability in Hyper-V and Scale-Out File Server scenarios. Improves SMB service and client reliability under certain stress conditions.

Error code when the kpasswd protocol fails after you perform an authoritative restore: “KDC_ERROR_S_PRINCIPAL_UNKNOWN”

http://support.microsoft.com/kb/976424: Install on every domain controller running Windows Server 2008 Service Pack 2  or Windows Server 2008 R2 in order to add a Windows Server 2012 failover cluster. This is included in Windows Server 2008 R2 Service Pack 1. So just see if you need this fix in your environment or not.

I’m happy to see Microsoft acting fast on these issues,, even if not critical, to serve & protect their customers deployments.

The Microsoft Management Summit 2013

MMS 2013 is in Las Vegas, Nevada, USA

Time flies fast and it’s time to look ahead to 2013. My continuing investment in myself is part of that.  Despite a lot of rumors about big changes to MMS (its future, location, timing etc.) things will go forward as they’ve been in the past years. That includes the location. As you probably already heard it’s back in Las Vegas, state of Nevada, USA. So after the, for many people, somewhat disconcerting announcement at MMS 2012 indicating the above mentioned changes, MMS 2013 will once again be held in Las Vegas again. As before it will be focused on the entire System Center Suite. That was confirmed by a mail form the MSS conference team recently and a TechNet blog post

image

Recently is was announced that the MMS 2013 content survey is now open. So they’re planning for the Microsoft Management Summit 2013 content and they’d like to hear from us. Why? Well, the better they align the content of the conference to our needs, the better it will be as an experience. This means our return on investment will be bigger which is always a good thing. So if you’re going or thinking of going this is the place, MMS 2013 Content Survey, to voice your opinions on what it should look like content wise. You have two more weeks to fill it out and than it’s scheduled to close down.

Why Attend?

It’s great to have an event focused on managing, deploying and protecting the infrastructure we’ve spent so much time, effort and money building. This conference is dedicated to exactly that. Smaller in scale but very focused. All together in the same hotel/conference center for 5 long days living in System Center and nothing else. As the world’s top operators in this space are there, the networking opportunities are also excellent. I can still remember the amount of talking and discussing I did with my colleagues in 2012, that was stimulating.

It’s also the place to provide feedback to Microsoft about System Center. Things you like, don’t like, things that are missing etc. I most certainly have some feedback for them.

Will I attend?

I’ll most certainly try to attend, that’s for sure. So it’s time to fill out the request form and start cutting through the red tape. Let’s hope the economy doesn’t tank completely and that we can go. The chips might be down right now but let’s not cost cut ourselves out of skills, education, opportunities and a future. Remember, keep moving forward and don’t quit yet, you can always give up later Winking smile.

Hyper-V Guest Storage Performance: Above & Beyond 1 Million IOPS

Making a million IOPS possible in a Windows Server 2012 Hyper-V VM

A lot of you will have seen the demos of a Hyper-V guest with VHDX disks running on Windows Server 2012 doing a million apps, if you haven’t yet, take a look here. While some quickly dismissed this as “irrelevant boasting” without real life relevance, I respectfully disagree. This is smart future proofing by Microsoft and provides a hypervisor ready for the future hardware capabilities and capable to handle the most demanding workloads today & in the years to come. Sure such a demo is under lab/ideal conditions and does not reflect the majority of real life environments but it’s nice to see what a hypervisor is capable of if and when you might need it. Remember there was a day that 4GB was a lot of RAM and 2TB sounded gigantic. Also remember that some people have larger needs than others.  Until Windows Server 2008 R2 you had some limitations in storage IO performance that would not allow for a million IOPS. These had to be addressed or all the efforts with regards to capabilities and performance in regard to storage, CPU, networking and memory would just hit those particular bottlenecks. So it is addressing real needs and indeed also smart future proofing.

Capabilities of virtual machine storage IO throughput in Windows 2008 R2

The capabilities listed below dictate the IO capabilities in virtual machines running on Windows Server 2008 R2 Hyper-V:

  1. Limited to one IO channel per virtual SCSI Controller
  2. 256 queue depth/SCSI for all devices attached to that SCSI adapter.
  3. There was one fixed vCPU (0) dedicated to handling IO.

image

The picture above illustrates these limits. You see two virtual SCSI Controllers each having 2 VHD virtual disks attached. Each disk shares the one channel the controller it is attached to has.

These limits could become a bottle neck but that was never was too big of a problem with a maximum of 4 vCPUs in Windows 2008 R2 Hyper-V. If needed for performance we might have attached VHDs to different virtual SCSI controllers for the best possible performance in Windows Server 2008 R2 Hyper-V .

With 64 vCPUs and ever more demanding workloads these limitations would become a (serious) issue so this needed to be addressed. If not, despite all other efforts in regards to the 4 big resources (memory, storage and network) in Windows 2012, this would remain the limiting factor of IOPS inside a virtual machine on Windows 2012.

Windows Server 2012 improvements to virtual machine storage IO scaling

image

The picture above illustrates the improvements in Windows Server 2012 Hyper-V IO Scaling:

  1. There is now 1 channel per 16 vCPUs, per virtual SCSI device, per controller. So that means you have 4 channels, per VHDX attached to a virtual SCSI Controller when you have 64 vCPUs in the virtual machine. Compared to before, this is a significant improvement and a much needed one with the 64 vCPUs capability there is now.
  2. IO interrupt handling is now distributed amongst all vCPUs and this process is NUMA aware. This is a huge improvement!
  3. There is now a 256 queue depth/device attached to a specific SCSI adapter. That’s another big improvement.

That people, is how you get a virtual machine to handle a million IOPS. Nice! The questions or doubts whether Hyper-V can deliver the capacity, throughput & performance have been wiped of the table, yes also for virtual storage IOPS. You can now go straight to how it will address your business needs. From my experience it does so brilliantly and very cost effectively. Life might not be perfect but it is very good Smile