Attending the MVP Global Summit 2016

The Microsoft MVP Global Summit 2016 has been announced last week. For any MVP this is a  happy communication to get and we start planning time away from work and look into flights.

The MVP Global Summit 2016 happens in Bellevue (offices, hotels) and Redmond (campus), the two locations where Microsoft has it’s main presence in the Puget sound area.

It at least 4 –5 days of intensive feedback sessions, brainstorming, education along with a non stop exchange of knowledge and experiences. But even on the weekend before and after the meet ups and discussion start or close the MVP summit. Those are the days you can get together and talk shop with your fellow MVPs and experts from all around the world. How often can you get such people to converge in such numbers in the same location?

There’s always extra opportunities to organize meetings and discuss technology with the people in the know. Both at Microsoft and with Microsoft business partners in and around the greater Seattle area, or the ones that fly in to be able to talk to us. That’s what many of us do while we’re there, stay the entire week and weekend. Many of us take some vacation days to make that happen.

It’s an intense period of long days and lots of activity. You’ll be tired that’s for sure. But that’s not even a thought that enters your mind. For passionate IT people this part of work is so interesting and stimulating you float through it as if you’re walking on air. It’s over before you know it.

My advice is to stay at least an entire week and make sure you get to talk to the people you want to have a chat with. If you’re not from the US you’ve flown long haul just to get here, make the most of it. Start your list of topics you’d like to discuss. Then prepare to find and contact the people you need to talk to about these. Don’t shy away from doing so on weekends. Many are willing to meet up with you in the evening or spend a few hours in the weekends over breakfast, lunch or dinner. In that regards, the MVP Summit is really an investment for all involved, we get our return on investment based on the time and the effort we put in. So yes it’s work, but as passionate IT people this is the kind of thing we love. People are more than willing to talk to you. Bring feed back, experiences, ideas, insights. Invest a bit in this al year round. The PMs at Microsoft really want to reach out and help make their products better and do well in real life.

Read more about the MVP Global Summit 2016 at T-Minus 182 Days to the MVP Global Summit!

SOFS / SMB 3 Offers Best VM Resiliency Experience

I have blogged about Virtual Machine Resiliency in Windows 2016 Failover Clustering before in Testing Virtual Machine Compute Resiliency in Windows Server 2016 

Those test and demos were done with block lever storage, CSV on Fibre Channel, iSCSI or shared SAS. Today we’ll look at the experience when you’re running your VMs on a continually available file share on a Scale Out File Server (SOFS). This configuration offers the best possible experience.

Why well, when the cluster node is in Isolated mode this has no impact on the SOFS share as this is a resource external to the Hyper-V cluster. In other words it remains on line. This means that the VMs, even if they have lost their high availability during the time the node is Isolated, they keep running. After all there is nothing wrong with Hyper-V itself. With block level CSV storage you lose access to the storage as that a cluster resource and the node got isolated. That’s why the VMs go into a paused critical state during a transient failure with block level storage but they don’t when you’re using SOFS.

image

The virtual machine compute resiliency feature in action shows you that the VMs service a transient failure without issues. Your services need never know something was up. Even when the transient failure is reoccurring that doesn’t mean it will cause down time. The node will be quarantined and if it come backup the workload will be live migrated away.

image

You can watch a video of this in action here on Vimeo:

The quarantine threshold and duration as well as the resiliency period and can be tweaked to your environment to get the best possible results.

image

SMB 3 for the win! This is yet one more convincing argument to start looking into SOFS and leveraging the capabilities of SMB3. Remember that you can run as SOFS cluster against your existing shared storage to get started if you can get the IOPS/latency you require. But also look into storage spaces, especially storage spaces direct which avoids some of the drawback SANs have in such a scenario. High time for storage vendors to really scale out, implement SMB 3 well and complete and keep the great added value features they already have in their offering. It’s this or becoming yet a bit more irrelevant in todays storage scene in the Microsoft ecosystem.

New SMB Instances in Windows Server 2016

Introduction

I’m pretty sure you all know / remember that in Windows Server 2012 R2 one of the improvements we got for SMB 3 was the default and the CSV instance. You can take a peak here at my slide deck from a presentation I gave at the Microsoft Technical Summit in Berlin 2014 Failover Clustering- What’s new in Windows Server 2012 R2

image

You can also read more on TechNet here.

We have New SMB Instances in Windows Server 2016

I’m happy to see this concept being expanded in the new SMB workloads. When playing  with Windows Server 2016 TPv5 I you’ll notice that we now have gotten extra SMB instances:

image

So what are these New SMB Instances in Windows Server 2016 about?

Default: This is what we had before, it’s nonspecific default SMB traffic, such as file shares

CSV: Also already known since Windows Server 2012 R2. This is the CSV traffic. This got isolated for better resiliency and isolation of issues. The goal was not to let CSV SMB issues affect default SMB traffic.

SR: This stands for Storage Replica. The purpose of this instance is the same as for CSV, isolate and make SMB on the whole more resilient.

SBL: This stands for “Storage Bus Layer”, which is related to Storage Spaces Direct replication traffic. The Storage Bus Layer is now called the Software Storage Bus (SSB). Again, isolated in its own instance for better resilience and isolation of issues. You can find more on the Software Storage Bus in Storage Spaces Direct and its use of SMB here Storage Spaces Direct – Under the hood with the Software Storage Bus

Picture by Microsoft®

“SSB uses SMB3 and SMB Direct as the transport for communication between the servers in the cluster. SSB uses a separate named instance of SMB in each server, which separates it from other consumers of SMB, such as CSVFS, to provide additional resiliency. Using SMB3 enables SSB to take advantage of the innovation we have done in SMB3, including SMB Multichannel and SMB Direct. SMB Multichannel can aggregate bandwidth across multiple network interfaces for higher throughput and provide resiliency to a failed network interface. SMB Direct enables use of RDMA enabled network adapters, including iWARP and RoCE, which can dramatically lower the CPU overhead of doing IO over the network and reduce the latency to disk devices”

Funny anecdote: while doing some research I stumbled upon the MSDN article MSFT_SmbShare class. As you can see in the screenshot below the name was mistakenly put at “Storage Bus Later” but it should be Storage Bus Layer or as it’s now called the Software Storage Bus:

clip_image002

Now that will be fixed soon or by the time you read this blog post. All fun aside, if you want to see what that Software Storage Bus is capable off look at this blog post and video by Ned Pyle on what Claus Joergenson achieved already in 2015 with this technology. Amazing results!

Simplified SMB Multichannel and Multi-NIC Cluster Networks

Simplified SMB Multichannel and Multi-NIC Cluster Networks

One of the seemingly small feature enhancements in Windows Server 2016 Failover clustering is simplified SMB multichannel and multi-NIC cluster networks. In Windows 2016 failover clustering now recognizes and uses multiple NICs on the same subnet for cluster networking (Cluster & client access).

image

Why was this introduced?

The growth in the capabilities of the hardware ( Compute, memory, storage & networking) meant that failover clustering had to leverage this capability more easily and for more use cases than before. Talking about SMB, that now also is used for not “only” CSV and live migration but also for Storage Spaces Direct and Storage Replica.

  • It gives us better utilization of the network capabilities and throughput with Storage Spaces Direct, CSV, SQL, Storage Replica etc.
  • Failover clustering now works with multichannel as any other workload without the extra requirement of needing multiple subnets. This is more important that it seems to me at first. But in many environment getting another VLAN and/or extra subnet is a hurdle. Well that hurdle has gone.
  • For IPv6 Link local Subnets it just works, these are auto configured as cluster only networks.
  • The cluster Validation wizard won’t nag about it anymore and knows it’s a valid failover cluster configuration

See it in action!

You can find a quick demo of simplified SMB multichannel and multi-NIC cluster networks on my Vimeo channel here

image

In this video I demo 2 features. One is new and that is virtual machine compute resiliency. The other is an improved feature, simplified SMB multichannel and multi NIC cluster networks. The Multichannel demo is the first part of the video. Yes, it’s with RDMA RoCEv2, you know I just have to do SMB Direct when I can!

You can read more about simplified SMB multichannel and multi-NIC cluster networks on TechNet in here. Happy Reading!