REFS Is Going Places At Microsoft Ignite 2015

I just loved the strengths of ReFS when I started looking into them when it was first announced. However it has been a bit quiet around ReFS due to some limitations or support issues.

But we’re seeing progress again and it seems that ReFS will be taken on a bigger role, even as the preferred file system for certain use cases. This is awesome. We’ll get the benefits REFS brings for less expensive types of disks in combination with storage spaces which are quite good already:

  • Integrity: ReFS stores data so that it is protected from many of the common errors that can cause data loss. File system metadata is always protected. Optionally, user data can be protected on a per-volume, per-directory, or per-file basis. If corruption occurs, ReFS can detect and, when configured with Storage Spaces, automatically correct the corruption. In the event of a system error, ReFS is designed to recover from that error rapidly, with no loss of user data.
  • Availability: ReFS is designed to prioritize the availability of data. With ReFS, if corruption occurs, and it cannot be repaired automatically, the online salvage process is localized to the area of corruption, requiring no volume down-time. In short, if corruption occurs, ReFS will stay online.
  • Scalability: ReFS is designed for the data set sizes of today and the data set sizes of tomorrow; it’s optimized for high scalability.
  • App Compatibility: To maximize AppCompat, ReFS supports a subset of NTFS features plus Win32 APIs that are widely adopted.
  • Proactive Error Identification: The integrity capabilities of ReFS are leveraged by a data integrity scanner (a “scrubber”) that periodically scans the volume, attempts to identify latent corruption, and then proactively triggers a repair of that corrupt data.

But, there’s more as ReFS has been improved and those improvements qualify it as the best default choice for a file system on Storage Spaces Direct (SSDi or D2S). What they have done to make it fast for certain data operations (VM creation, resizing, merges, snapshots) can only be described as “ODX” like. We’re getting speed, scalability, auto repair, high availability and data protection in a budget friendly storage. What’s not to like. There are many uses cases now where the need and benefits are clear but the economics worked against us. Well that’s about to be solved with the new and improved storage offerings in Windows Server 2016. I’m looking forward to more information on the evolution of ReFS as it matures as a file systems and take its place in on the front stage over the years. If you haven’t yet, I suggest you start looking at ReFS (again). I’ll be watching to see how far they take this.

Defragmenting your CSV Windows 2012 R2 Style with Raxco Perfect Disk 13 SP2

When it comes to defragmenting CSV it seemed we took a step back when it comes to support from 3rd party vendors. While Windows provides for a great toolset to defragment a CSV it seemed to have disappeared form 3r party vendor software. Even from the really good Raxco Perfect disk. They did have support for this with Windows 2008 R2 and I even mentioned that in a blog.

If you need information on how to defragment a CSV in Windows 2012 R2, look no further.There is an absolutely fantastic blog post on the subject How to Run ChkDsk and Defrag on Cluster Shared Volumes in Windows Server 2012 R2, by Subhasish Bhattacharya one of the program managers in the Clustering and High Availability product group. He’s a great guy to talk shop to by the way if you ever get the opportunity to do so. One bizarre thing is that this must be the only place where PowerShell (Repair-ClusterSharedVolume cmdlet) is depreciated in lieu of chkdsk.

3rd party wise the release of Raxco Perfect Disk 13 SP2 brought back support for defragmenting CSV.

image

I don’t know why it took them so long but the support is here now. It looks like they struggled to get the CSVFS (the way CSV are now done since Windows Server 2012) supported. Whilst add it, they threw in support for ReFS by the way. This is the first time I’ve ever seen this. Any way it’s here and that’s good because I have a hard time accepting that any product (whatever it does) supports Hyper-V if it can’t handle CSV, not if you want to be taken seriously anyway. No CSV support equals = do not buy list in my book.

Here’s a screenshot of Perfect disk defragmenting away. One of the CSV LUNs in my lab is a SSD and the other a HDD.

image

Notice that in Global Settings you can tweak the behavior when defragmenting optimization of various drive types, including CSVFS but you just have to leave the default on unless you like manual labor or love PowerShell that much you can’t forgo any opportunity to use it Winking smile

image

Perfect disk cannot detect what kind of disks you have behind the CSV LUN so you might want to change the optimization method if you’re running SSD instead of HHD.

image

I’d love for Raxco to comment on this or point to some guidance.

What would also be beneficial to a lot of customers is guidance on defragmentation on the different auto-tiering storage arrays. That would make for a fine discussion I think.