Hot add/remove of network adapters and enabling device naming in Windows Server Hyper-V

One of the cool new features in Window Server vNext Hyper-V (in Technical Preview at the moment of writing) is that you gain the ability to hot add and remove NICs.  That might sound not to important to the non initiated in the fine art of virtualization & clouds. But it is. You see anything you can do to a VM configuration wise that does not require downtime is good. That’s what helps shift the needle of high availability to that holey grail of continuous availability.

On top of that the names of the network adapters are now exposed to the guest. Which is also great. It’s become lot easier to automate the VM network configuration.

Hot adding NICs can be done via the GUI and PoSh.

image

But naming the network adapter seems a PowerShell only game for now (nothing hard, no sweat). This can be done during creation of the network adapter. Here I add a NIC to VM RAGNAR connected to the ISCSI-GUEST switch & named ISCSI.

Add-VMNetworkAdapter –VMName RAGNAR –SwitchName ISCSI-GUEST –Name ISCSI

Now I want this name to be reflected into the VM’s NCI configuration properties. This is done by enabling device naming. You can do this via the GUI or PoSh.

Set-VMNetworkAdapter –VMName RAGNAR –Name ISCSI –Devicenaming On

That’s it.

image

So now let’s play with our existing network adapter “Network Adapter” which connects our Hyper-V guests to the LAN via the HYPER-V-GUESTS switch? Can you rename it?  Yes, you can. In PoSh run this:

Rename-VMNetworkAdapter –VMName RAGNAR –Name “Network Adapter” –NewName “LAN”

And that’s it. If you refresh the setting of your VM or reopen it you’ll see the name change.

image

The one thing that I see in the Tech Preview is that I need to reboot the VM to see the Name change reflected inside the VM in the NIC configuration under advance properties, called “Hyper-V Network Adapter Name”. Existing one show their old name and new one are empty until then.

image

 

Two important characteristics to note about enabling device naming

You notice that one can edit this field in NIC configuration of the VM but it doesn’t move up the stack into the settings of the VM. Security wise this seems logical to me and it’s not intended to work. It’s a GUI limitation that the field cannot be disabled for editing but no one can try and  be “funny” by renaming the ethernet adapter in the VMs settings via the guest Winking smile

Do note that this is not exactly the same a Consistent Device Naming in Windows 2012 or later. It’s not reflected in the name of the NIC in the GUI, these are still Ethernet, Ethernet 2, … Enable device naming is mainly meant to enable identifying the adapter assigned to the VM inside the VM, mainly for automation. You can name the NIC in the Guest whatever works best for you and you’ll never lose the correlations between the Network adapter in your VM settings and the Hyper-V Network Adapter name in the NIC configuration properties. In that respect is a bit more solid/permanent even if some one found it funny to rename all vNICs to random names you’re still OK with this feature.

That’s it off, you go! Download the Technical Preview bits from MSDN, start exploring and learning. Knowledge is seldom a bad thing Winking smile

Configuring timestamps in logs on DELL Force10 switches

When you get your Force10 switches up and running and are about to configure them you might notice that, when looking at the logs, the default timestamp is the time passed since the switch booted. During configuration looking at the logs can very handy in seeing what’s going on as a result of your changes. When you’re purposely testing it’s not too hard to see what events you need to look at. When you’re working on stuff or trouble shooting after the fact things get tedious to match up. So one thing I like to do is set the time stamp to reflect the date and time.

This is done by setting timestamps for the logs to datetime in configuration mode. By default it uses uptime. This logs the events in time passed since the switch started in weeks, days and hours.

service timestamps [log | debug] [datetime [localtime] [msec] [show-timezone] | uptime]

I use: service timestamps log datetime localtime msec show-timezone

F10>en
Password:
F10#conf
F10(conf)#service timestamps log datetime localtime msec show-timezone
F10(conf)#exit

Don’t worry if you see $ sign appear left or right of your line like this:

F10(conf)##$ timestamps log datetime localtime msec show-timezone

it’s just that the line is to long and your prompt is scrolling Winking smile.

This gives me the detailed information I want to see. Opting to display the time zone and helps me correlate the events to other events and times on different equipment that might not have the time zone set (you don’t always control this and perhaps it can’t be configured on some devices).

image

As you can see the logging is now very detailed (purple). The logs on this switch were last cleared before I added these timestamps instead op the uptime to the logs. This is evident form the entry for last logging  buffer cleared: 3w6d12h (green).

Voila, that’s how we get to see the times in your logs which is a bit handier if you need to correlate them to other events.

Migrate A Windows 2003 RADIUS–IAS Server to Windows Server 2012 R2

Some days you walk into environments were legacy services that have been left running for 10 years as:

  1. They do what they need to do
  2. No one dares touch it
  3. Have been forgotten, yet they provide a much used service

Recently I had the honor of migrating IAS that was still running on Windows Server 2003 R2 x86, which was still there for reason 1. Fair enough but with W2K3 going it’s high time to replace it. The good news was it had already been virtualized (P2V) and is running on Hyper-V.

Since Windows 2008 the RADIUS service is provided by Network Policy Server (NPS) role. Note that they do not use SQL for logging.

Now in W2K3 there is no export/import functionality for the configuration in IAS. So are we stuck? Well no, a tool has been provided!

Install a brand new virtual machine with W2K12R2 and update it. Navigate to C:WindowsSysWOW64 folder and grab a copy of IasMigReader.exe.

image

Place IasMigReader.exe in the C:WindowsSystem32 path on the source W2K3 IAS server as that’s configured in the %path% environment variable and it will be available anywhere from the command prompt.

  • Open a elevated command prompt
  • Run IasMigReader.exe

image

  • Copy the resulting ias.txt file from the  C:WindowsSystem32IASfolder. Please keep this file secure it contains password. TIP: As a side effect you can migrate your RADIUS even if no one remembers the shared secrets and you now have them again Winking smile

image

Note: The good news is that in W2K12 (R2) the problem with IasMigReader.exe generating a bad parameter in ias.txt is fixed ((The EAP method is configured incorrectly during the migration process from a 32-bit or 64-bit version of Windows Server 2003 to Windows Server 2008 R2). So no need to mess around in there.

  • Copy the ias.tx file to a folder on your target NPS server & run the following command from an elevated prompt:

netsh nps import <path>ias.txt

image

  • Open the NPS MMC and check if this went well, normally you’ll have all your settings there.

image

When Network Policy Server (NPS) is a member of an Active Directory® Domain Services (AD DS) domain, NPS performs authentication by comparing user credentials that it receives from network access servers with the credentials that are stored for the user account in AD DS. In addition, NPS authorizes connection requests by using network policy and by checking user account dial-in properties in AD DS.

For NPS to have permission to access user account credentials and dial-in properties in AD DS, the server running NPS must be registered in AD DS.

Membership in Domain Admins , or equivalent, is the minimum required to complete this procedure.

  • All that’s left to do now is pointing the WAPs (or switches & other RADIUS Clients) to the new radius servers. On decent WAPs this is easy as either one of them acts as a controller or you have a dedicated controller device in place.
  • TIP: Most decent WAPS & switches will allow for 2 Radius servers to be configured. So if you want you can repeat this to create a second NPS server with the option of load balancing. This provides redundancy & load balancing very easily. Only in larger environments multiple NPS proxies pointing to a number of NPS servers make sense.Here’s a DELL PowerConnect W-AP105 (Aruba) example of this.

image

10Gbps Cheap & Without Risk In Even The Smallest Environments

Over the last 18 months cheaper, commodity, small port count, but high quality 10Gbps switches have become available. NetGear is a prime example. This means 10Gbps networking is within reach for even the smallest deployments.

Size is an often used measure for technological needs like storage, networking and compute but in many cases it’s way too blunt of a tool. A lot of smaller environments in specialized niches need more capable storage  and networking capacities than their size would lead you to believe. The “Enterprise level” cost associated with the earlier SPF+ based swithes was an obstacle especially since the minimum port count lies around 24 ports, so with switch redundancy this already means 2 *24 ports.  Then there’s the cost of vendor branded SPF+ modules. But that could be offset with Copper Twinax Direct Attach cabling (which have their sweet spots for use) or finding functional cheaper non branded SFP+ modules. But all that isn’t an issue anymore. Today 10GBase-T card & switches are readily available and ready for prime time. The issues with power consumption and heat have been dealt with.

While vendors like DELL have done some amazing work to bring affordable 10Gbps switches to the market it remained a obstacle for many small environments. Now with the cheaper copper based, low port count switches it’s become a lot easier to introduce 10Gbps while taking away the biggest operational pains.

  • You can start with a lower number of 10Gbps ports (8-12) instead of  a minimum of 24.
  • No need for expensive vendor branded SPF+ modules.
  • Copper cabling (CAT6A) is relatively cheap for use in a rack or between two racks and for this kind of environment using patch lead cables isn’t an issue
  • Power consumption and heat challenges of copper 10Gbps has been addressed.

8port10Gbps

So even for the smallest setups where people would love to get 10Gbps for live migrations, hypervisor host backups and/or the virtual network it can be done now. If you introduce these for just CSV, live migration, storage or backup networks you can even avoid having to integrate them into the data network. This makes it easier, non disruptive & the isolation helps puts minds at easy about potential impacts of extra traffic and misconfigurations. Still you take away the heavy loads that might be disrupting your 1Gbps network, making things well again without needing further investments.

So go ahead, take the step and enjoy the benefits that 10Gbps bring to your (virtual) environment. Even medium sized shops can use this as a show case while they prepare for a 10Gbps upgrade for the server room or data center in the years to come.