
Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  1 

Discrete Device Assignment in 
Windows Server 2016 Hyper-V 
1 Introduction  
Windows Server 2016 introduces Discrete Device Assignment (DDA). This allows a PCI Express 

connected device, that supports this, to be connected directly through to a virtual machine. 

The idea behind this to gain extra performance or in the case of GPUs that might not support RemoteFX 

to be used directly by a VM. 

As we directly assign the hardware to VM we need to install the drivers for that hardware inside of that 

VM just like you need to do with real hardware. 

I refer you to the starting blog of a series on DDA in Windows 2016: 

 Discrete Device Assignment — Description and background 

 Discrete Device Assignment — Machines and devices 

 Discrete Device Assignment — GPUs 

 Discrete Device Assignment — Guests and Linux  

Here you can get a wealth of extra information. My experimentations with this feature relied heavily on 

these blogs and MSFT provide GitHub script to query a host for DDA capable devices. That was very 

educational in to finding out the PowerShell we needed to get DDA to work! 

2 Requirements 

There are some conditions the host system needs to meet to even be able to use DDA. The host 

needs to support Access Control services which enables pass through of PCI Express devices in a 

secure manner. The host also need to support SLAT and Intel VT-d2 or AMD I/O MMU. This is 

dependent on UEFI, which is not a big issue. All my W2K12R2 cluster nodes & member servers 

run UEFI already anyway. All in all, these requirements are covered by modern hardware. The 

hardware you buy today for Windows Server 2012 R2 meets those requirements when you buy 

decent enterprise grade hardware such as the DELL PowerEdge R730 series. That’s the model I had 

available to test with. Nothing about these requirements is shocking or unusual. The host 

requirements are also listed here: https://technet.microsoft.com/en-us/library/mt608570.aspx  

 The processor must have either Intel’s Extended Page Table (EPT) or AMD’s Nested Page 

Table (NPT).  

 The chipset must have: 

o Interrupt remapping: Intel’s VT-d with the Interrupt Remapping capability (VT-d2) 

or any version of AMD I/O Memory Management Unit (I/O MMU). 

o DMA remapping: Intel’s VT-d with Queued Invalidations or any AMD I/O MMU. 

o Access control services (ACS) on PCI Express root ports. 

 The firmware tables must expose the I/O MMU to the Windows hypervisor. Note that this 

feature might be turned off in the UEFI or BIOS. For instructions, see the hardware 

documentation or contact your hardware manufacturer. 

https://blog.workinghardinit.work/
https://blogs.technet.microsoft.com/virtualization/2015/11/19/discrete-device-assignment-description-and-background/
https://blogs.technet.microsoft.com/virtualization/2015/11/20/discrete-device-assignment-machines-and-devices/
https://blogs.technet.microsoft.com/virtualization/2015/11/23/discrete-device-assignment-gpus/
https://blogs.technet.microsoft.com/virtualization/2015/11/24/discrete-device-assignment-guests-and-linux/
https://technet.microsoft.com/en-us/library/mt608570.aspx


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  2 

 

A PCI express device that is used for DDA cannot be used by the host in any way. You’ll see we actually 

dismount it form the host. It also cannot be shared amongst VMs. It’s used exclusively by the VM it’s 

assigned to.  As you can imagine this is not a scenario for live migration and VM mobility. This is a major 

difference between DDA and SR-IOV or virtual fibre channel where live migration is supported in very 

creative, different ways. Now I’m not saying Microsoft will never be able to combine DDA with live 

migration, but to the best of my knowledge it’s not available today. 

You get this technology both on premises with Windows Server 2016 as and with virtual machines 

running Windows Server 2016; Windows 10 (1511 or higher) and Linux distros that support it. It’s also an 

offering on high end Azure VMs (IAAS). It supports both Generation 1 and generation 2 virtual 

machines. Al be it that generation 2 is X64 bit only, this might be important for certain client VMs. We’ve 

dumped 32 bit Operating systems over decade ago so to me this is a non-issue. 

For this article I used a DELL PowerEdge R730, a NVIIA GRID K1 GPU. Windows Server 2016 TPv4 with CU 

of March 2016 and Windows 10 Insider Build 14295. 

Microsoft supports 2 devices at the moment: 

 GPUs and coprocessors 

 NVMe (Non-Volatile Memory express) SSD controllers 

Other devices might work but you’re dependent on the hardware vendor for support. Maybe that’s OK 

for you, maybe it’s not. 

Below I describe the steps to get DDA working. There’s also a rough video out on my Vimeo channel: 

https://vimeo.com/161800097  

3 Preparing a Hyper-V host with a GPU for Discrete 

Device Assignment 
First of all, you need a Windows Server 2016 Host running Hyper-V. It needs to meet the hardware 

specifications discussed above, boot form EUFI with VT-d enabled and you need a PCI Express GPU to 

work with that can be used for discrete device assignment. 

It pays to get the most recent GPU driver installed and for our NVIDIA GRID K1 which was 362.13 at the 

time of writing. 

 

On the host when your installation of the GPU and drivers is OK you’ll see 4 NIVIDIA GRID K1 Display 

Adapters in device manager. 

https://blog.workinghardinit.work/
https://vimeo.com/161800097


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  3 

 

 

We create a generation 2 VM for this demo.  In case you recuperate a VM that already has a RemoteFX 

adapter in use, remove it.  You want a VM that only has a Microsoft Hyper-V Video Adapter. 

 

In Hyper-V manager I also exclude the NVDIA GRID K1 GPU I’ll configure for DDA from being used by 

RemoteFX. In this show case that we’ll use the first one. 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  4 

 

OK, we’re all set to start with our DDA setup for an NVIDIA GRID K1 GPU!  

4 Assign the PCI Express GPU to the VM 
4.1 Prepping the GPU and host 
As stated above to have a GPU assigned to a VM we must make sure that the host no longer has use of 

it. We do this by dismounting the display adapter which renders it unavailable to the host. Once that is 

don we can assign that device to a VM. 

Let’s walk through this. Tip: run PoSh or the ISE as an administrator. 

We run Get-VMHostAssignableDevice. This return nothing as no devices yet have been made available 

for DDA. 

I now want to find my display adapters 

#Grab all the GPUs in the Hyper-V Host 
$MyDisplays = Get-PnpDevice  | Where-Object {$_.Class -eq "Display"} 
$MyDisplays | ft -AutoSize 
  
This returns 

 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  5 

As you can see it list all adapters.  Let’s limit this to the NVIDIA ones alone. 

#We can get all NVIDIA cards in the host by querying for the nvlddmkm 
#service which is a NVIDIA kernel mode driver 
$MyNVIDIA = Get-PnpDevice  | Where-Object {$_.Class -eq "Display"} | 
Where-Object {$_.Service -eq "nvlddmkm"} 
$MyNVIDIA | ft -AutoSize  
 

 

 

If you have multiple type of NVIDIA cared you might also want to filter those out based on the friendly 

name. In our case with only one GPU this doesn’t filter anything.  What we really want to do is excluded 

any display adapter that has already been dismounted. For that we use the -PresentOnly parameter. 

#We actually only need the NVIDIA GRID K1 cards, let's filter some 
#more.There might be other NVDIA GPUs. We might already have dismounted 
#some of those GPU before. For this exercise we want to work with the 
#ones that are mounted he parameter -PresentOnly will do just that. 
$MyNVidiaGRIDK1 = Get-PnpDevice -PresentOnly| Where-Object {$_.Class -eq 
"Display"} | 
Where-Object {$_.Service -eq "nvlddmkm"} | 
Where-Object {$_.FriendlyName -eq "NVIDIA Grid K1"} 
$MyNVidiaGRIDK1 | ft -AutoSize  

 

Extra info:  When you have already used one of the display adapters for DDA (Status “UnKnown”).  Like in 

the screenshot below.  

 

We can filter out any already unmounted device by using the -PresentOnly parameter. As we could have 

more NVIDIA adaptors in the host, potentially different models, we’ll filter that out with the FriendlyName 

so we only get the NVIDIA GRID K1 display adapters. 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  6 

 

In the example above you see 3 display adapters as 1 of the 4 on the GPU is already dismounted. 

The “Unkown” one isn’t returned anymore. 

 

Anyway, when we run 

 
$MyNVidiaGRIDK1 = Get-PnpDevice -PresentOnly| Where-Object {$_.Class -eq 
"Display"} | 
Where-Object {$_.Service -eq "nvlddmkm"} | 
Where-Object {$_.FriendlyName -eq "NVIDIA Grid K1"} 
$MyNVidiaGRIDK1 | ft -AutoSize 
 
We get an array with the display adapters relevant to us. I’ll use the first (which I excluded form 

use with RemoteFX). In a zero based array this means I disable that display adapter as follows: 
Disable-PnpDevice -InstanceId $MyNVidiaGRIDK1[0].InstanceId -Confirm:$false 

Your screen might flicker when you do this. This is actually like disabling it in device manager as 
you can see when you take a peek at it. 
 

 
 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  7 

When you now run 
 
$MyNVidiaGRIDK1 = Get-PnpDevice -PresentOnly| Where-Object {$_.Class -eq 
"Display"} | 
Where-Object {$_.Service -eq "nvlddmkm"} | 
Where-Object {$_.FriendlyName -eq "NVIDIA Grid K1"} 
$MyNVidiaGRIDK1 | ft -AutoSize  

 
Again you’ll see 

 
 
 
The disabled adapter has error as a status. This is the one we will dismount so that the host no 

longer has access to it.  The array is zero based we grab the data about that display adapter. 
#Grab the data (multi string value) for the display adapter 
$DataOfGPUToDDismount = Get-PnpDeviceProperty DEVPKEY_Device_LocationPaths -
InstanceId $MyNVidiaGRIDK1[0].InstanceId 
$DataOfGPUToDDismount | ft -AutoSize  
 
  

 

We grab the location path out of that data (it's the first value, zero based, in the multi string value). 
#Grab the location path out of the data (it's the first value, zero based) 
#How do I know: read the MSFT blogs and read the script by MSFT I mentioned 
earlier. 
$locationpath = ($DataOfGPUToDDismount).data[0] 
$locationpath | ft -AutoSize  

 

 
 

This locationpath is what we need to dismount the display adapter. 
#Use this location path to dismount the display adapter 
Dismount-VmHostAssignableDevice -locationpath $locationpath -force  

 

Once you dismount a display adapter it becomes available for DDA. When we now run 
$MyNVidiaGRIDK1 = Get-PnpDevice -PresentOnly| Where-Object {$_.Class -eq 
"Display"} | 
Where-Object {$_.Service -eq "nvlddmkm"} | 
Where-Object {$_.FriendlyName -eq "NVIDIA Grid K1"} 
$MyNVidiaGRIDK1 | ft -AutoSize  

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  8 

 

We get:: 

 

 
 

As you can see the dismounted display adapter is no longer present in display adapters when 

filtering with -presentonly. It’s also gone in device manager.  

 

 

Yes, it’s gone in device manager …. There’s only 3 NVIDIA GRID K1 adaptors left. Do note that the 

device is unmounted and as such unavailable to the host but it is still functional and can be assigned to a 

VM. To I/O wise that device is still fully functional. The remaining NVIDIA GRID K1 adapters can still be 

used with RemoteFX for VMs. 

It’s not “lost” however. When we adapt our query to find the system devices that have dismounted I 

the Friendly name we can still get to it (needed to restore the GPU to the host when needed). This 

means that -PresentOnly for system has a different outcome depending on the class. It’s no longer 

available in the display class, but it is in the system class.  

 

And we can also see it in System devices node in Device Manager where is labeled as “Dismounted”. 

 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  9 

 

 

We now run Get-VMHostAssignableDevice again see that our dismounted adapter has become 

available to be assigned via DDA. 

 

This means we are ready to assign the display adapter exclusively to our Windows 10 VM. 

4.2 Assigning a GPU to a VM via DDA 
  

You need to shut down the VM 

Change the automatic stop action for the VM to “turn off”  

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  10 

 

This is mandatory our you can’t assign hardware via DDA. It will throw an error if you forget this. 

I also set my VM configuration as described in  

https://blogs.technet.microsoft.com/virtualization/2015/11/23/discrete-device-assignment-gpus/ 

I give it up to 4GB of memory as that’s what this NVIDIA model seems to support. According to the blog 

the GPUs work better (or only work) if you set -GuestControlledCacheTypes to true. 

“GPUs tend to work a lot faster if the processor can run in a mode where bits in video memory can be held in the 

processor’s cache for a while before they are written to memory, waiting for other writes to the same memory. This is 

called “write-combining.” In general, this isn’t enabled in Hyper-V VMs. If you want your GPU to work, you’ll probably 

need to enable it” 

#Let's set the memory resources on our generation 2 VM for the GPU 
Set-VM RFX-WIN10ENT -GuestControlledCacheTypes $True -LowMemoryMappedIoSpace 
2000MB -HighMemoryMappedIoSpace 4000MB 

 
You can query these values with Get-VM RFX-WIN10ENT | fl * 
 
We now assign the display adapter to the VM using that same $locationpath 
Add-VMAssignableDevice -LocationPath $locationpath -VMName RFX-WIN10ENT  

Boot the VM, login and go to device manager. 

https://blog.workinghardinit.work/
https://blogs.technet.microsoft.com/virtualization/2015/11/23/discrete-device-assignment-gpus/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  11 

 

 

We now need to install the device driver for our NVIDIA GRID K1 GPU, basically the one we used on the 

host. 

 

Once that’s done we can see our NVIDIA GRID K1  in the guest VM. Cool! 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  12 

 

 

You’ll need a restart of the VM in relation to the hardware change. And the result after all that hard 

work is very nice graphical experience compared to RemoteFX  

 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  13 

What you don’t believe it’s using an NVIDIA GPU inside of a VM? Open up perfmon in the guest VM and 

add counters, you’ll find the NVIDIA GPU one and see you have a GRID K1 in there. 

 

Start some GP intensive process and see those counters rise . 

 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  14 

 

5 Remove a GPU from the VM & return it to the host. 
 

When you no longer need a GPU for DDA to a VM you can reverse the process to remove it from the VM 

and return it to the host.  

Shut down the VM guest OS that’s currently using the NVIDIA GPU graphics adapter. 

In an elevated PowerShell prompt or ISE we grab the locationpath for the dismounted display adapter 

as follows 

$DisMountedDevice = Get-PnpDevice -PresentOnly |  
Where-Object {$_.Class -eq "System" -AND $_.FriendlyName -like "PCI Express 
Graphics Processing Unit - Dismounted"} 
$DisMountedDevice | ft -AutoSize  
 

 
We only have one GPU that’s dismounted so that’s easy. When there are more display adapters 

unmounted this can be a bit more confusing. Some documentation might be in order to make sure you 

use the correct one. 

We then grab the locationpath for this device, wich is at location 0 as is ann array with one entry (zero 

based). So in this case we could even leave out the index. 

 
$LocationPathOfDismountedDA = ($DisMountedDevice[0] | Get-PnpDeviceProperty 
DEVPKEY_Device_LocationPaths).data[0] 
$LocationPathOfDismountedDA 

  
 

 

 

Using that locationpath we remove the DDA GPU from the VM 

#Remove the display adapter from the VM. 
Remove-VMAssignableDevice -LocationPath $LocationPathOfDismountedDA -VMName 
RFX-WIN10ENT 

  
We now mount the display adapter on the host using that same locationpath 

#Mount the display adapter again. 
Mount-VmHostAssignableDevice -locationpath $LocationPathOfDismountedDA 

  
We grab the display adapter that’s now back as disabled under device mamabger of in an “error” staus 

in the display class of the pnpdevices. 

#It will now show up in our query for -presentonly NVIDIA GRIDK1 display 
adapters 
#It status well be "Error" (not "Unknown") 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  15 

$MyNVidiaGRIDK1 = Get-PnpDevice -PresentOnly| Where-Object {$_.Class -eq 
"Display"} | 
Where-Object {$_.Service -eq "nvlddmkm"} | 
Where-Object {$_.FriendlyName -eq "NVIDIA Grid K1"} 
$MyNVidiaGRIDK1 | ft -AutoSize 

  

 

 

We grab that first entry to enable the display adapter (or do it in device manager) 

#Enable the display adapater 
Enable-PnpDevice -InstanceId $MyNVidiaGRIDK1[0].InstanceId -Confirm:$false  

 

The GPU is now back and available to the host. When your run you Get-VMHostAssignableDevice it 

won’t return this display adapter anymore. 

We’ve enabled the display adapter and it’s ready for use by the host or RemoteFX again. Finally, we set 

the memory resources & configuration for the VM back to its defaults before I start it again. 

#Let's set the memory resources on our VM for the GPU to the defaults 
Set-VM RFX-WIN10ENT -GuestControlledCacheTypes $False -LowMemoryMappedIoSpace 
256MB -HighMemoryMappedIoSpace 512MB 

  

 

Now tell me all this wasn’t pure fun! 

https://blog.workinghardinit.work/


Discrete Device Assignment in Windows Server 2016 Hyper-V  

https://blog.workinghardinit.work  16 

About the Author 

 

Didier Van Hoye is an IT veteran with over 17 years of expertise in 
Microsoft technologies, storage, virtualization and networking. He 
works mainly as a subject matter expert advisor and infrastructure 
architect in Wintel environments leveraging DELL hardware to build the 
best possible high performance solutions with great value for money. 
He contributes his experience and knowledge to the global community 
as Microsoft MVP in Hyper-V, a Veeam Vanguard, a member of the 
Microsoft Extended Experts Team in Belgium and a DELL TechCenter 
Rockstar. He does so as a blogger, author, presenter and public 
speaker. 

 

 

 

 

  

 

 

Twitter @workinghardinit  

 

Blog http://blog.workinghardinit.work  

 

Linkedin http://be.linkedin.com/in/didiervanhoye  

 

https://blog.workinghardinit.work/
http://twitter.com/#!/workinghardinit
http://blog.workinghardinit.work/
http://be.linkedin.com/in/didiervanhoye
http://twitter.com/#!/workinghardinit
http://blog.workinghardinit.work/
http://be.linkedin.com/in/didiervanhoye
https://mvp.microsoft.com/en-us/PublicProfile/4038163?fullName=Didier van Hoye

